
 

急倾斜巨厚煤层掘进巷道冲击危险时序及等级智能预测
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摘　要：实现煤矿冲击地压智能预警对于保障矿井安全作业具有重要意义。以新疆某矿急倾斜巨厚

煤层的掘进巷道冲击地压发生时序智能分级预测作为背景，分析了急倾斜巨厚煤层巷道掘进期间

各微震信息指标的时空演化规律，利用遗传算法 (Genetic Algorithm，GA) 优化的随机森林 (Ran-
dom Forest，RF) 对预测冲击发展趋势性能较高的多项指标进行了优选，基于相空间重构技术

(Phase Space Reconstruction，PSR) 将数据映射至高维空间进行重构，结合长短期记忆神经网络

(Long Short-Term Memory，LSTM) 训练学习高维度数据特征，构建了基于深度学习与多元混沌时

序的急倾斜巨厚煤层冲击地压预测模型 (PSR-LSTM)，依据现场实际对模型的预测性能进行了评价。

结果表明：急倾斜巨厚煤层巷道掘进下各微震信息指标对冲击预警的敏感性较强，彼此之间具有

显著的相关性；优选出了预测冲击发展趋势性能较高的 6 项微震信息指标；多项指标的时间序列

具有混沌特性，经过相空间重构后再进行 LSTM 学习训练，可有效增强模型的数据利用率与预测

精度，所构建的 PSR-LSTM 模型在指定预测时长为 1 d 的情况下，预测准确率可达 0.913 5、F1 值

可达 0.911 6，均优于未经重构的 LSTM 模型。模型较好地预测了急倾斜巨厚煤层掘进巷道发生冲

击危险的时序趋势及危险等级，研究方法可为急倾斜巨厚煤层掘进巷道冲击地压发生的智能预测

预警提供借鉴与参考。

关键词：急倾斜巨厚煤层；掘进巷道；冲击地压；多元混沌时序；相空间重构；深度学习

中图分类号：TP18；TD324　　文献标志码：A　　文章编号：0253−9993(2025)02−0845−17

Intelligent prediction of time series and grade of rock burst in steeply inclined ultra-
thick coal seam excavation roadway
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Abstract: Realizing the intelligent warning of rock burst in coal mine is of great significance to ensure the safety of mine
operation. Based on the intelligent classification prediction of rock burst occurrence time series in roadway of steeply in-
clined ultra-thick coal seam in a mine in Xinjiang, the spatio-temporal evolution of each microseismic information index
during roadway excavation  was  analyzed.  The  Random Forest  optimized  by  Genetic  Algorithm (GA) was  used.  RF se-
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lects  a  number  of  indicators  with  high  performance  in  predicting  the  development  trend  of  impact.  Based  on  the  Phase
Space  Reconstruction  (PSR)  technology,  the  data  is  mapped to  the  high-dimensional  space  for  reconstruction.  LSTM is
trained  to  learn  the  characteristics  of  high  dimensional  data,  and  a  prediction  model  of  steeply  inclined  ultra-thick  coal
seam rock burst (PSR-LSTM) based on deep learning and multiple chaotic time series is constructed. The results show that
each microseismic information index is sensitive to shock warning and has significant correlation with each other. Six mi-
croseismic information indexes with high performance in predicting the development trend of shock are selected. The time
series of multiple indicators has chaotic characteristics. After phase space reconstruction, LSTM learning and training can
effectively enhance the data utilization rate  and prediction accuracy of  the model.  When the prediction time of  the con-
structed PSR-LSTM model  is  specified as  1  day,  the  prediction accuracy can reach 0.913 5,  and the F1 value can reach
0.911 6. All of them are better than the unreconstructed LSTM model. The model can well predict the time series trend and
danger level of the rock burst in the excavation roadway of steeply inclined ultra-thick coal seam. The research method can
provide reference for the intelligent  prediction and early warning of rock burst  in the excavation roadway of steeply  in-
clined ultra-thick coal seam.
Key words: steeply  inclined  ultra-thick  coal  seam；excavation  roadway； rock  burst；multivariate  chaotic  time series；
phase space reconstruction；deep learning
  

0　引　　言

近年来，随着我国煤炭资源的开采重心逐渐由浅

部开采向深部开采方向转移，受限于深部矿井复杂的

地质环境、原岩应力高以及冲击地压防控经验不足等

因素，当工作面前方煤岩受频繁的高强度开采扰动影

响，极易诱发冲击地压等动力灾害[1]，为有效防治冲击

地压造成的破坏性灾害，实现有效的预警是当前的工

作重点[2]。

冲击地压具有高度不确定性和不可预知性，因此

对于易发生冲击地压的矿井，厘清时空特征、全方位

获取灾变的前兆信息对于冲击地压的防治具有极其

重要的意义[3]。目前，冲击地压监测预警领域，已有学

者做了大量的研究，主流的预警手段有微震法、地音

法、钻屑法等。其中，微震法能够实现煤岩体破裂的

连续监测而被广泛应用[4]，齐庆新等[5]将微震监测理

论应用到冲击地压监测防治中；窦林名等[6]应用微震

监测法构建了冲击危险性动态预测评价的震动波 CT
探测技术并给出了各指标判别准则；姜福兴等[7]通过

对厚煤层冲击地压灾害的研究，构建了复合型厚煤层

 “震−冲”型动力灾害力学模型；田向辉等[8]提出了一

种定量−趋势冲击危险预警方法；丛利等[9]提出了一种

基于动静载冲击地压危险叠加的综合预警方法；崔峰

等[10]研究指出加卸载响应比指标有着较好预警效能。

可以看出众学者针对微震监测法，进行了大量实践并

取得了显著的效果。随着采掘环境日益复杂，结合煤

矿智能化建设的需求，将深度学习等人工智能方法引

入采矿及岩土工程动力灾害研究领域，融合智能模型

提取动力灾害特征信息，建立多元数据驱动的预警模

型来解决冲击地压的复杂性和非线性问题，可以更好

地把握深井冲击地压动态。

就人工智能与岩石力学交叉领域方面，大量学者

进行了积极的探索。赵洪波等[11]将冲击地压看做一

时间序列过程，提出冲击地压预测的 PSO-SVM模型，

建立了冲击地压序列之间的非线性关系；谭云亮等[12]

基于冲击地压 AE时间序列，建立了小波神经网络预

测模型；AHMAD等[13]发现随机树法预测冲击地压分

类等级上可以达到较高的准确率；田睿等[14]开展了基

于深度残差神经网络的岩爆预测方法研究；DONG
等[15]结合随机森林算法进行了岩爆等级预测方法研

究；考虑到冲击地压发生过程具有混沌特征，陶慧

等[16]提出基于多变量时间序列相空间重构 GRNN模

型，使用多状态量重构后的相空间作为输入，完成了

冲击地压预测实验；崔峰等[17]开展了基于相空间重构

与深度学习的冲击地压 b 值序列趋势研究，为冲击地

压 b 值在时间上的演化特征提供了借鉴；刘慧敏等[18]

进一步使用 CNN-LSTM集成学习方法得到了岩爆未

来状态的预测值。

上述学者从能量、频次、b 值等多参量响应规律

和特征入手，基本厘清了冲击地压发生的时空演化规

律，并深入研究了基于数据驱动的预警方法，研究成

果对于冲击地压智能化监测预警具有重要意义。然

而，受限于冲击地压等地质灾害事件的复杂性和多样

性，现有的深度学习算法存在特征提取困难、模型解

释性差、泛化能力弱等弊端。模型在未知数据上易出

现过拟合或欠拟合的情况，从而难以确定预测结果的

可信度和掌握冲击地压机理。并且大多学者都是以

近水平或缓倾斜煤层为研究对象，针对急倾斜巨厚煤
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层这种煤岩赋存环境极其复杂的地质条件，对于其冲

击地压前兆特征挖掘和发生时序智能分级预测的研

究较少。如何从急倾斜巨厚煤层冲击地压的监测数

据中高效提取出有效信息，增强预警模型泛化能力和

预测准确率是当前亟待解决的重点问题。

对于急倾斜巨厚煤层的冲击地压智能预警，笔者

以新疆某矿急倾斜巨厚煤层掘进巷道为背景，提出了

一种深度学习与多元混沌时序的数据融合驱动预测

方法。统计分析了急倾斜巨厚煤层掘进巷道的冲击

地压前兆微震信息指标的演化规律；引入相空间重构

技术 (PSR)将优选的指标时序数据映射到高维空间

进行重构；考虑到冲击地压时空演化的动态性和非线

性，选用 LSTM模型学习各指标时间序列特征，实现

对未来冲击危险等级的预测分类。构建的模型可弥

补微震信息指标的不足，提取出冲击地压多指标下隐

含数据特征，最终达到提高预警准确率的目的。 

1　工程背景

新疆某矿为急倾斜 45°～87°巨厚煤层开采的典

型煤矿，在山脉等地质构造与断层长期影响作用下，

该矿急倾斜煤层呈现出独特的大角度褶曲与扭转的

构造特征，地质环境极其复杂，其急倾斜煤岩赋存特

征如图 1所示。
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图 1    某矿急倾斜煤岩赋存特征

Fig.1    Occurrence characteristics of steeply inclined coal and

rock in a mine
 

该矿现主采 B1+2煤层与 B3+6煤层，B1+2煤层

平均厚度 37 m，B3+6煤层平均厚度 49 m，据现场应

力结果显示：该矿应力场以水平构造为主，为垂直应

力的 1.74～1.90倍。现场采用水平分段综采放顶煤

采煤法，现阶段的分段高度为 25 m，割煤高度为 3 m，

放煤高度约 22 m。煤层回采结束后，在采空区内充填

矸石与黄土。

随着该矿掘进进入+400水平，巷道受地应力影响

逐步加大，结合冲击危险区域划分情况来看，B3和

B6巷道都已经进入冲击危险高发区，危险性较高。

2023年 8月 12日，该矿+400水平 B3巷道与 B6巷道

同时掘进时，在 B3巷道的 810 m处发生 1次大能量

事件，能量值达 33 000 J。工作面出现较大煤炮声，工

作面有轻微扬尘，B3巷北帮煤体侧 786～816 m出现

底鼓，平均 40 cm。统计到 8月 6日至 8月 12日共发

生 7次超 1 000 J以上能量事件，其微震能量事件分布

及震源位置如图 2所示。
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图 2    “8·12”大能量事件及前一周微震事件空间分布

Fig.2    Spatial distribution of large energy events of “8·12” and

microseismic events in previous week
 

+400水平 B3巷道“8·12”事件发生前一个月监

测到多次微震事件，各能级微震事件频次与能量占比

如图 3所示。

由图 3可知，该矿+400水平 B3掘进面 2023年

7月 12日至 8月 12日的微震事件整体上可划分为

B3单巷掘进、B3和 B6双巷同时掘进 2个时期。B3
与 B6两巷掘进工作面平均距离为 191 m，8月 1日前

为 B3单巷掘进，8月 1日后为 B3和 B6双巷同时掘

进期。单巷掘进时期 B3巷能量频次整体较为平稳，
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进入双巷掘进后，微震能量呈“升高—降低—再升高—

再降低”周期性变化趋势，此时期微震能量变化幅度

较单巷掘进时期明显增大。表明 B6巷掘进面与 B3
巷掘进面出现采动应力叠加现象，受 B6巷掘进影响，

B3掘进面煤岩应力调整不稳定，活动较为剧烈。该时

期 B3掘进面冲击危险性较高，为实时掌握 B3巷冲击

危险程度，需进一步挖掘“8·12”事件之前的历史微

震数据潜在规律和隐含的前兆信息，形成多元微震信

息指标融合驱动的综合预警，旨在实时判别危险等级，

指导现场解危工作。 

2　冲击地压多元预警指标确定
 

2.1　微震信息指标的选取

大能量事件以及冲击地压的发生的过程中，除可

以直接辨识的震动、声浪现象外，还伴随着能量等微

震前兆信息的改变。国内外学者在地震学领域的相

关研究基础上，提出了许多关于冲击地压的微震预警

指标并赋予了表征意义。冲击地压矿井的种类不同，

不同的微震信息指标的预警能力表现具有差异，同时

单一指标的预警能力具有一定的局限性，多指标融合

可以更好的实现冲击危险的智能特征识别。因此，面

向实际情况需要进一步细化指标这一需求，结合急倾

斜巨厚煤层的地质和开采条件，根据经验和统计分析，

综合考虑了关于时间、空间、强度的共计 9个微震信

息指标，对预测急倾斜巨厚煤层掘进巷道发生冲击危

险的敏感性较高，各指标含义简介如下：

1) b 值。1941年，古登堡和里克特针对地震活动

特征研究，提出了著名的地震−频度关系 (G-R[19]关

系)，即：

lg N (⩾ M) = a−bM (1)

⩾ M其中，M 为震级；N 为 的累计次数；a、b 为微

震活动的相关经验常数；研究表明，可以将微震数据

的能量频次关系转化为 G-R关系的震级频次关系[20]，

具体计算方法如下：

lg E = 4.8+1.5M (2)

式中：E 为震源释放能量，J。
当前计算 b 值最主要的方法有最大似然法和最

小二乘法[21]。其中最大似然法采用空间扫描步求取

平均震级从而得到 b 值，易受小震级事件影响，而本

文研究对象为矿井掘进面，小震级事件偏多，因此采

取最小线性二乘法进行时间步扫描得到 b 值的时序

规律特征。计算方法如下：

b =

m∑
i=1

Mi

m∑
i=1

lg Ni−m
m∑

i=1

Mi lg Ni

m
m∑

i=1

M2
i −
 m∑

i=1

M

2
(3)

式中：m 为震级分档总数；Mi 为第 i 档震级；Ni 为第 i
档震级的实际事件数。

2) A(b)值。在冲击地压前兆信息的研究中，虽然

将 G-R关系中的 a 值和 b 值作为某一时间段内微震

活动趋势和能量占比指标，但它并不能严格表征微震

活动平静或增强，例如小能量的事件可能导致 a 值增

大但活动强度并未增加，b 值可以表示能量事件大小

比例而不能表示总体释放的能量。基于此，为准确描

述微震活动的增强或平静特征，引入 A(b)值[22]综合考

虑特定时间与特定地点内微震能量和频次等因素，它

主要代表了工作面采动范围内全部微震事件中能量

较大的一部分微震事件，可作为微震的时间、强度预

警指标。A(b)值定义如下：

A (b) =
1
b

lg
n∑

i=1

10bM (4)

式中：n 为微震频次。A(b)值与 b 值的大小成反比，

即 b 值越小则 A(b)值越大。

3)微震活动 P(b)值。P(b)值代表了小震级微震
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图 3    “8·12”事件前一月微震事件特征

Fig.3    Microseismic event characteristics in the month before

“8·12”event
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事件[23]。在特定的时间范围内，小震级的增多可以表

征矿震的孕育过程，大能量事件发生前，小震级事件

有着活动强度低而数量增多的特征，该特点可以作为

预警的参考，小震级微震事件集合 P(b)值定义如下：

P (b) =
n
b

lg n∑
i=1

10bM − lgn

 (5)

4)矿震活动度 S 值。矿震活动度 S 值考虑微震

活动的时、空、强因素，包含微震的频次、能量、震源

分布集中度及强度的记忆特征等多个指标，可以很好

的定量描述微震活动的强弱程度[24]。矿震活动度 S
值定义如下：

S = 0.117 lg(n+1)+0.029 lg
1
n

n∑
i=1

101.5M +0.015Mmax

(6)

式中： Mmax 为最大震级。强矿震事件发生时，在时间、

空间、强度的增加都将会导致矿震活动度 S 值的

上升。

5)缺震。“缺震”表示为缺失震级的现象，当某区

域长期的平均能级较小时，那么这一区域将极有可能

发生较大的能量事件作为对该区域大能级缺失的弥

补。缺震可作为强度预警指标，计算公式[25]如下：

bL =
0.434 3
M̄−M0

(7)

M̄式中：bL 为缺震值； 和 M0 分别为该区域的时间段内

微震事件的平均能级和起始能级。

6)矿震活动标度 ΔF 值。罗兰格结合苏联地震学，

得到地震断裂层面上所受的总应力 F0 与震级相对

应[26]，强矿震事件发生前矿震活动标度 ΔF 出现高值

异常，该值定义如下：

ΔF = lg


∑

F0

T

 (8)

F0 = 106.11+1.09M (9)

式中：T 为天数；  F0 为地震破裂断层面上所受的总

应力。

7)算法复杂性 AC值。算法复杂性 AC值可以表

征矿震演化的时序过程[27]，有一定的混沌特性，适用

于矿震的时间序列分析，AC值定义如下：

AC =
ln x
x lny

(10)

式中：x 为某一特定时间段内震级变化次数；y=Mmax−
Mmin+1，Mmax 为最大震级，Mmin 为最小震级。

8) Z-map值。Z-map值是通过分析某一时间段内

微震事件的平均震级的变化，进而获得该区域特定时

间段内微震活动性的强弱[28]。Z-map值大致服从正

态分布的规律，定义如下：

m̄ j =
1
k

k∑
i=1

mi (11)

z =
M̄− m̄√

(σM)2

N
+

(σm)2

n

(12)

m̄ j M̄
m̄ σM

σm

式中： 为统计范围内全部微震事件平均震级； 与

为全部范围与统计范围 2种情况下 mj 的均值；

和 为 2样本的标准差。

9)等效能级参数 EEM。等效能级参数 EEM反

映区域内微震事件平均能级的情况，它将微震事件能

级进行归一化，反映对正常水平偏离程度，矿震发生

时有高值异常情况[28]，该指标定义如下：

σ (m∗) =
m∗− M̄∗
√

M̄∗
(13)

σ (m∗)式中： 为等效能级参数 EEM；m*为归一化能级；

为 m*的平均归一化能级。 

2.2　冲击地压微震信息指标实例分析

以该矿+400水平 B3巷掘进工作面 2023年 6
月—2023年 9月期间的微震数据作为源数据计算各

指标值。由于 B3单巷掘进期间每日的微震数量较少，

每天事件数相差较大，为减少各指标数据误差，增强

数据表现能力，因此按照事件数划分计算窗口和滑移

步长。研究发现当事件窗口过大容易受早期数据的

影响、窗口过小则各指标值的波动变大。经调试，以

计算窗口为 100，滑移步长为 10，计算出的各指标演

化趋势以及 2次较大能量事件显现的标注如图 4
所示。

计算得到了各个指标的平均值：平均 b 值为

0.696、平均 A(b)值 3.153、平均 P(b)值−354.896、平

均矿震活动度 S 值 0.385、平均缺震值 0.387、平均矿

震活动标度 ΔF 值 3.46、平均 Z-map值−0.226、平均

算法复杂度 AC值 0.04、平均等效能级参数 EEM值

0.024。
当“8·12”大能量事件发生时，其 b 值较小，为

0.531，小于平均值且前多日的数据整体呈现明显的降

幅，A(b)值为 5.5，远大于平均值。P(b)相较平均值较

高。S 值与缺震值较高，显著高于平均值，相较于前几

日趋势陡增，且幅度较大。矿震活动标度 ΔF 值为

3.434，为统计范围内最小值，且单巷和双巷掘进期间

均发生过一次幅度较大的降低趋势。Z-map值为

第 2 期 　崔　峰等：急倾斜巨厚煤层掘进巷道冲击危险时序及等级智能预测 849



−2.476，低于平均值，处于统计范围内最小值附近，等

效能级参数 EEM值相对较高，为 0.211，算法复杂性

AC值为 0.043，相对于平均值较高，双巷掘进期间变

化趋势相较于单巷掘进期间幅度明显增大。

大能量事件的发生代表着煤岩较大的破裂，在此

之前能量不断积聚，微震活动不断趋于活跃，各微震

信息指标均有相应的短期或中长期前兆特征。通过

ΔF统计分析可知：b 值、P(b)值、 值、算法复杂性 AC
值的演化曲线处于一定范围内的极小值或极小值附

近亦或处于快速下降状态；A(b)值、缺震值、微震活

动度 S、等效能级参数 EEM大部分处于一定范围的

极大值或极大值附近亦或处于上升状态；对于 Z-map
这一指标而言，当其绝对值超过 2时危险性较高，大

能量事件显现时其绝对值均高于预警值。
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图 4    巷道掘进期间各指标变化特征

Fig.4    Variation characteristics of each index during roadway excavation
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由上述分析可知，各指标在大能量事件发生前存

在异常特征，所达到的阈值存在着超标的情况,往往在

特定的时间窗口内存在着局部极值或处于极值范围

附近。例如煤岩迅速破裂释放能量导致低 b 值异常、

矿震活动强烈导致高 A(b)值异常、高 S 值异常等，同

时各指标往往还伴随着急剧的上升或下降等情况，变

化幅度与变化趋势均存在着差异性。基于对各指标

阈值或趋势的预警有效性识别，可以相对直观的判断

出当前危险程度，但也存在着局限性和不足之处。首

先，统计的方式方法不同、基于人为经验产生的决断

措施不同等因素影响下，将产生非必要的误差，甚至

可能因为标准的不统一而导致与结果完全相悖的结

论。其次，统计各类指标的变化特征能达到的预警效

果有限，因为各指标的计算是基于一定物理含义的，

不同矿井的地质条件、赋存情况不同，则各指标对于

预警结果的敏感性权重也存在差异[29]。基于以上分

析和探讨，笔者尝试引入深度学习方法，旨在对预警

指标的信息特征进行深度挖掘，实现冲击地压的精确

预测。 

2.3　预测模型架构

本文提出的预测模型架构如图 5所示，主要包括

3部分：数据预处理、特征指标优选、预测模型。
 
 

改进的CC方法求重构参数

求取李雅普诺夫指数

判断多维矩阵混沌特性
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征
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选

最佳性能特征子集
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序号 频次
当天累计能
量

当天平均能
量

0 2 730 365

1 3 1 550 516.666 7

2 11 6 408 582.545 5

3 8 2 807 350.875

··· ··· ··· ···

n 4 1 617 404.25
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图 5    冲击地压预测模型架构

Fig.5    Structure of rock burst prediction model
 

数据预处理首先将原始微震数据的坐标能量等

信息根据给定时间窗口进行统计和分析，通过指定计

算窗口与滑移步长，计算得到各指标的时序数据；再

根据微震历史数据分布特征及能级−频度曲线，找到

能量拐点并确定分类阈值；最后，生成多指标特征的

时间窗口序列及其标签，最终得到用于训练的模式序

列集合。

特征指标优选主要是根据预处理部分得到的序

列及标签，采用一种集成的机器学习算法，得到最优

模型的指标组合，提高运算效率。
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预测模型首先构建了关于冲击危险的多元混沌

相空间，然后将其结果输入至预测网络中，最后实现

冲击危险等级的预测分类。 

2.4　数据预处理

数据预处理的整体过程如图 6所示。首先需要

构建各指标的时序数据集。具体是通过滑动计算窗

口，得到每一指标的窗口值并记录。

假设第 i 个滑动窗口计算得到的数据记录为 wi，

其可以表示为

wi = (id,date,e1,e2, · · · ,e9) (14)

式中：id为窗口编号，date为日期时间，e1～e9 为选取

的微震信息指标。由此可以得到被划分为 n 个窗口

的时间序列数据：

Window = (w0,w1,w2, · · · ,wn−1) (15)

再根据滑动窗口数据集 Window构建各指标的

时间前兆序列，对于每一个数据记录 wi 来说，设其前

兆序列为 pi,则其可以表示为

pi =
(
wi× j−1,wi× j−2, · · · ,wi× j−s

)
(16)

其中，s 为指定滑动窗口的长度，此处设定为 100，
j 为采样步长，此处设定为 1。即第 i 个记录数据其前

兆序列为前 s 个记录数据的集合。得到 n 个时间窗口

的前兆模式序列集 P 可表示为

P = (p1, p2, · · · , pn) (17)

最后，建立每个前兆模式序列集相对应的冲击危

险指数 G的标签集合，具体可表示为

G = (t0, t1, t2, · · · , tD) (18)

其中，D 为总体统计天数的数量，ti 为时间窗口序

列中某一天的冲击危险等级标签，分类标签具体计算

过程如下文。
 
 

原始数据

序号 日期 时间 能量

1 2023−03−10 19:21:06 30.00 

2 2023−03−10 20:30:27 40.00 

3 2023−03−10 21:06:16 180.00 

4 2023−03−10 21:09:40 120.00 

5 2023−03−11 21:14:03 64.00 

6 2023−03−11 21:16:35 59.00 

7 2023−03−12 15:27:50 960.00 

8 2023−03−12 16:03:09 660.00 

9 2023−03−12 20:08:39 8.60 

··· ··· ··· ···

序号 危险指数
当天最
大能量

频
次

当天累
计能量

当天平均
能量

1 0.073 116 520 2 730 365

2 0.154 668 1 100 3 1 550 516.666 7

3 0.309 237 2 300 11 6 408 582.545 5

4 0.116 704 830 8 2 807 350.875

5 0.309 237 2 300 14 7 196 514

6 0.154 668 1 100 4 1 617 404.25

7 0.084 364 600 22 5 474 248.818 2

8 0.084 364 600 22 5 474 248.818 2

··· ··· ··· ··· ··· ···

序列数据窗口Window 前兆模式序列P

序号 危险指数 缺震 ···

1 0.073 116 0.534 869 4.997 68 0.169 428 ··· 0.372 825

2 0.154 668 0.585 315 4.537 222 0.171 375 ··· 0.389 028

3 0.309 237 0.641 299 4.043 45 0.174 856 ··· 0.404 289

4 0.116 704 0.710 49 3.129 958 0.181 249 ··· 0.393 591

5 0.309 237 0.717 188 2.954 888 0.185 034 ··· 0.388 117

6 0.154 668 0.702 858 2.825 938 0.193 816 ··· 0.375 65

7 0.084 364 0.666 254 3.125 097 0.195 461 ··· 0.373 817

8 0.084 364 0.534 869 4.997 68 0.169 428 ··· 0.372 825

··· ··· ··· ··· ··· ··· ···

S值A(b)值b值

图 6    数据预处理过程

Fig.6    Data preprocessing process
 

为细化监测预警结果，在集成学习模型训练之前，

需要对每个时间窗口的微震能量数据集给定分类标

签。通过观察巷道掘进期间的历史微震数据，在大能

量事件发生前，存在某应力集中区域。应力受采掘扰

动导致冲击显现后，该区域或附近位置的震级档内的

事件出现突增或骤减，导致微震事件比例异常。因此，

可由能量−频度曲线的分析找到能级的偏移点，从而

确定微震单次能量所对应的冲击危险等级。

根据该矿+400水平 B3巷掘进期间统计的全部

微震事件，选取 1.8≤lg E≤4.0区间的微震监测数据

绘制出能量−频度曲线并进行线性拟合，得到的能级−
频度曲线结果如图 7所示。

得到了拟合曲线方程为

lg N = (−7.331 69±6.942 7)×10−4×
exp{− lg E/[(−0.493 12±0.058 54)×10−4]}+
2.001 17±0.068 21 (19)

式中：lg N 为频度，lg E 为能级，R²为回归方程的拟合度。

由图 7可知，拟合度 R2 为 0.914 37，具有较好的

拟合效果，说明 lg E 的选取区间较合理，可以作为“G-
R”关系中 b 值的能量区间。另一方面，全部微震事件

的能级−频度曲线呈现出先升后降的抛物线形式，初

期的高频次、低能级段呈现为指数分布，随着能级的

 

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

0

0.5

1.0

1.5

2.0

lg
 N

lg E

y=A1exp(-x/t1)+y0

lgN
y0 2.001 77±0.062 98
A1 -7.331 69×10-4±6.942 7×10-4

t1 -0.491 32±0.058 54
0.914 37

(3.65,0.78)

微震数据
拟合趋势线

(3.25,1.75)

方程
绘图

R2(COD)

图 7    +400水平 B3巷掘进期间微震能级−频度曲线

Fig.7    Microseismic energy-frequency curve during tunneling of

B3 lane at +400 level
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增加，曲线呈现出线性分布特征。可以观测到曲线具

有斜率的突然下降现象，说明此时发生了能级偏移，

震级档内的微震事件比例异常，冲击危险性增加，将

偏移点的能量值作为临界值具有较好的预警潜力。

从图 7中可以明显看出能量−频次曲线中的 2个

偏移点，分别为 (3.25,1.75)、(3.65,0.78)，于是可将大能

量事件发生的临界值作为冲击危险的临界点，从而计

算得到冲击危险等级。划定弱冲击危险的能量临界

值 Er=10
3.25=1  778  J、中等冲击危险的能量临界值

Ez=10
3.65=3 981 J。依据现场实际，在巷道掘进期间，

除“8·12”事件能量有较大幅度显现，其余整体微震

事件能量值均位于 10 000 J以下，且并无能量显现情

况发生。由图 7得到的能级−频度曲线也可看出，能

级大于 4.0的情况下并无频度分布，因此对强冲击危

险临界值进行单独划分，选择 Eq=10 000 J作为强冲击

危险的能量临界值。同样对单次微震能量数据进行

处理，具体处理方法为以当日发生的最高能量微震事件

值作为冲击地压监测预警的等级，根据微震能量等级

划分的区间，将对应的单次能量数据进行标准化处理。

E'为能量标准化结果，Emax 为历史期间最大能量事件。

该矿 B3掘进工作面单次能量危险等级细分见表 1。
  

表 1    单次能量危险等级细分

Table 1    Breakdown of single energy hazard level

能量区间/J 能量标准化结果E' 危险等级判别ti

0～1 778
0.25E

Er
I(无冲击危险)

> 1 778～3 981 0.25+
0.25(E−Er)

Ez −Er
II(弱冲击危险)

> 3 981～10 000 0.50+
0.25(E−Ez)

Eq −Ez
III(中等冲击危险)

> 10 000 0.75+
0.25
(
E−Eq

)
Emax −Eq

IV(强冲击危险)

  

2.5　基于 GA-RF 指标优选

对于不同种类的冲击地压矿井，各预警指标作为

对前兆信息的表征作用的敏感性并不相同，即指标的

预警能力存在着差异。因此优选出预警能力较高的

前兆信息指标可以达到提高预警准确率的目的。本

文采用前述的 9个指标作为候选集，采用一种反馈迭

代式思路优选特征指标。通过 GA-RF算法创建和维

护一个特征子集的种群，并使用遗传操作 (交叉和变

异)来生成新的特征子集；通过多次迭代和反复训练

模型并剔除最不重要的特征，评估出最优特征指标集

合作为最终的特征选择结果。具体步骤如下：

1)加载给定的微震数据集{a1,a2,…,am,label}，将
每个指标看做一个候选子集，对应 a1-am，lable是将当

天的危险等级作为分类标签并编码为数字。然后，将

数据集划分为特征和标签，并将其分割为训练集和测

试集。选用样本训练集和测试集样本数量比为 8∶2。
2)定义适应度函数，该函数使用随机森林分类器

对选择的特征进行训练和预测，最后返回分类器的

F1 值作为适应度评分。F1 值是精确率 (Precision)和
召回率 (Recall)的调和平均，可用来判别分类器的优

劣。计算公式如下：

F1 = 2
PR

P+R
(20)

式中：P 为精确率，代表所有被模型预测为正例中真实

正例的比率；R 为召回率，代表所有真实正例中预测结

果也为正例的比率。

3)定义遗传算法的相关参数，然后初始化种群，

并在主循环中进行遗传算法的操作：在每一代循环中，

我们计算每个个体的适应度评分 (即当前候选指标子

集的 F1 值)，然后选择父代个体进行交叉操作，生成子

代个体；接着，对子代个体进行变异操作，以增加种群

的多样性；最后，更新种群并打乱个体顺序；在每一代

的循环中，记录当前代最佳个体的选择特征和适应度

评分。

4)在循环结束后，找到具有最高适应度评分的个

体，并输出其对应的选择特征，这些特征就是通过遗

传算法选择出的最佳特征子集。

对于算法的超参数选取，根据经验和多次试验测

试进行了参数调优，最终确定随机森林分类器的决策

树数量为 100，控制随机性的种子值设置为 30，遗传

算法中，设定种群大小为 100、迭代次数为 50、特征数

量为 9、变异率为 0.02。由上述指标优选思想，取得

试验结果见表 2。
 

表 2    不同微震信息指标组合预测的适应度评分值

Table 2    Fitness scores predicted by different combinations of physical indicators

指标组合 F1值 指标组合 F1值

b值、A(b)值、缺震、AC值、EEM值、S值 0.761 b值、A(b)值、缺震、S值 0.746

A(b)值、AC值、EEM值 0.758 b值、A(b)值、缺震、AC值、EEM值、S值、Z-map值 0.744

A(b)值、缺震、Z-map值、S值 0.756 b值、A(b)值、缺震、AC值、EEM值、S值、ΔF值 0.729

b值、A(b)值、缺震、AC值、S值 0.749 b值、A(b)值、缺震、AC值、EEM值、S值、P(b)值 0.727

b值、缺震、S值 0.747 b值、A(b)值、缺震、Z-map值、ΔF值、AC值、S值 0.714
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对各指标组合的 F1 值进行比较 ，发现 b 值、

A(b)值、缺震、算法复杂度 AC值、等效能级参数

EEM值、矿震活动度 S 值的 6个指标组合为最优结

果，预警准确率较高 (F1=0.761)。在此最优组合基础

增加其他指标并不会提高准确率，且会增加后续模型

的学习训练时间，因此指标优选后一定程度上提高了

数据处理的效率。

图 8为随机森林算法对优选出的 6个特征的重

要程度分布情况，其重要性的数值越偏离 0，表示该特

征对于目标变量的影响越大，重要程度越高。可以看

出，针对该矿的急倾斜巨厚煤层掘进巷道而言，对冲

击危险等级敏感性最强的是缺震值和矿震活动度

S 值，其次按照特征重要性排序依次是等效能级参数

EEM值、b 值、A(b)值以及算法复杂性 AC值。结合

指标组合的适应度评分可知以上 6个微震信息指标

对于冲击危险等级的敏感性较高，后续研究可根据该

特征的重要性排序动态调整学习权重和参数选择，优

化学习效率，提升预测准确率。
 
 

0.218
0.209

0.197

0.151

0.123
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S值 缺震 EEM值 b值 A(b)值 AC值

图 8    随机森林特征重要性排序

Fig.8    Importance ranking of random forest features
  

3　多元时间序列的相空间重构
 

3.1　相空间重构理论

混沌现象是自然界中普遍存在的由确定的非线

性动力系统产生复杂行为的不规则运动，它能够还原

出随机无序现象中的规律，更好的刻画事物的本质特

征以及动力态性。一个系统变化往往受到多种物理

因素的共同影响，当某个因素产生变化时，背后往往

包含着系统中其他因素相应的动态信息。研究表明

在任何混沌系统当中，可以用一个一维混沌时间序列

来重构出与原动力系统在拓扑意义下等价的相空

间[30]，从而直观描述出混沌系统的状态特征。

由上述的混沌理论可知，混沌系统中的变量运动

轨迹会呈现出特定的规律，由此可以根据给定的冲击

地压时间序列轨迹构建相应的相空间。通过计算获

得时间延迟、嵌入维数等相关参数，将原有的时间序

列拓展至更高维度的空间中，于是相空间中的每一维

数均相互等价且能互相表征。总之，相空间的重构就

是在混沌理论的基础上从分量时间序列出发创建出

一个保持原来多个分量的等价多维状态空间[31]。

在急倾斜巨厚煤层掘进巷道冲击地压多元微震

信息指标的预测研究中，其影响因素具有动态变化性

和多样性。通过量化数据可知，挖掘数据中隐含的规

律，需要长时间且频率较高的数据。该矿+400水平

B3巷道相关微震信息指标自开掘后长期变化趋势

相对一致，因此可结合上文 GA-RF特征提取方法，利

用实验优选的 6个影响因素共同构建多元混沌相

空间。
 

3.2　延迟时间和嵌入维数的确定

τ

τw = (m−1)τ

τ

重构相空间是混沌时间序列分析的基础，D.KU-
GIUMTZIS[32]提出了嵌入窗法，指出延迟 和维数 m
相关，且依靠嵌入窗 相互关联。H.S.KIM
等[33]进一步提出了 C-C算法，该算法弥补了自相关函

数法只适用于线性系统、非线性系统易出现误导而导

致重构相空间失败等缺点，该算法抗噪声能力较强且

能够同时计算出 和 m。对于 C-C方法简介如下：

考虑混沌时间序列 x={xi|i=1,2,…,N}，先定义关联

积分 C(m,N,r,t)，再由 2个关联积分之差构造统计量

S1：

S1 (m,N,r, t) =C (m,N,r, t)−Cm (1,N,r, t) (21)

式中：m 为嵌入维，r 为空间距离，t 为时延，关联积分

C 表示相空间中任意两点之间距离小于 r 的概率。

随后将时间序列 x 分解为 t 个互不重叠的子序列，

并依据统计量 S1 采用分块平均策略，构造出每个子序

列的统计量 S2：

S2 (m,N,r, t)=
1
t

t∑
s=1

[
Cs

(
m,

N
t
,r, t
)
−Cm

s

(
1,

N
t
,r, t
)]

(22)

当 N 趋近于无穷时，有：

S2(m,r, t) =
1
t

t∑
s=1

[
Cs(m,r, t)−Cm

s (1,r, t)
]

(23)

根据自相关法原理，最优时延可取 S2 的第 1个零

点，或者 S2 对所有半径 r 相互差别最小的时间点，选

择最大半径和最小半径定义差量：

ΔS 2 (m, t) =max
{
S 2
(
m,r j, t

)}−min
{
S 2
(
m,r j, t

)}
(24)

最后依据 BDS统计结论可确定统计量 N、m、r
参数的估计取值，有如下公式：
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

S̄ (t) =
1

16

4∑
j=2

5∑
m=2

S 2
(
m,r j, t

)
ΔS̄ (t) =

1
4

5∑
m=2

ΔS 2 (m, t)

S cor (t) = ΔS̄ (t)+ |S̄ (t) |

(25)

S̄ (t) ΔS̄ (t)

S cor(t)

式中：最优时延取 的第 1个零点或 第 1个局

部极小点，嵌入窗口取 的全局最小点。

本文采用文献[34]提出的改进的 C-C方法实现相

空间重构参数的计算。冲击地压相关微震信息指标

的时序数据中即存在着确定性因素也含有随机因素，

即有噪声也有混沌特性。采取改进的 C-C法思想选

取相关参数，可以一定程度上弥补噪声带来的不良影

响，根据该法可求得各时间序列的嵌入维数 m 和时间

延迟 τ 。现以 b 值为例说明参数计算过程，图 9为根

据改进的 C-C法求取的时间序列 b 值时延和嵌入维

数的计算结果。
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(a) 改进的C-C法求延迟时间

(b) 改进的C-C法求嵌入窗口

时间延迟τ

τ=48

0 10 20 30 40 50 60 70 80 90 100

0

0.005

0.010

0.015

0.020

S
co

r(
t)

τw=33

图 9    改进的 C-C方法求取 b 值结果

Fig.9    Results by the improved C-C method for b values
 

由图 9可知，所求 b 值时间序列的时间延迟 τ=48，
嵌入窗 τw=33，根据公式推导可知 m=τw/τ+1，对 τw/τ 运
算值进行向下取整得 0，求得 b 值的嵌入维数 m=1，同
理可计算其余 6个指标的时延和嵌入维数，结果见表 3。
  

表 3    重构相空间中各影响因素延迟时间和时间窗

Table 3    Delay time and time window of each influencing
factor in reconstructed phase space

相空间参数 b值 A(b)值 S值 缺震值 AC值 EEM值

τ时间延迟 48 4 11 23 11 11

嵌入维数m 1 13 8 3 7 7
 

3.3　基于 Wolf 法最大 Lyapunov 指数的混沌性检验

混沌系统对初始值敏感性较强，为此引入描述混

沌系统敏感性的指标 Lyapunov指数。在实际应用中，

建立多元混沌时间序列需要检验其是否具有混沌特

性，若选取的时间序列不具有混沌特性则无法成功找

到混沌吸引子，最终导致预测失败。Lyapunov指数法

可以较为简单判断系统的混沌程度，该法应用较为普

遍且得到广泛认可。

Wolf于 1985年首次提出了轨道追踪法[35]，这种

方法需要使用较长的数据量，它是一种通过相平面、

相体积、相轨迹等等演化来估计 Lyapunov指数的一

种方法。各指标数据量相对较大，因此本文采用 wolf
法估计 Lyapunov指数，检验重构后的时间序列是否

具有混沌秩序性，wolf法简介如下：

假设重构相空间 Y，其初始点为 Y(t0)，设其与最近

邻点 Y0(t0)的距离为 L0，观察直到 t1 时刻两点时间演

化轨迹，对于两点之间的距离若满足式 (26)，则保留

Y(t1)。

ε > 0,L′0 = |X (t1)−X0 (t1) | > ε (26)

L1 = |Y (t1) = Y1 (t1)| < π

λi

随后，在 Y(t1)邻近另外找一个点 Y1(t1)，使得

，并且与之夹角尽可能小，对上

述方法进行迭代，直至 Y(t)到达时间序列终点，最大

Lyapunov指数 计算公式为

λ =
1

tM − t0

M∑
i=0

ln
L′i
Li

(27)

经过上述计算步骤可得，b 值、A(b)值、缺震、等

效能级参数 4个时间序列的最大 Lyapunov指数分别

为 0.648 7、0.031 5、0.117 6、0.023 0，结果均大于 0，
说明以上 4个分量均具有混沌特性。矿震活动度 S
值与 AC值 Lyapunov指数小于 0，不参与相空间重构，

但其与冲击地压等级的相关性较高，仍保留其作为一

维时序数据使用。 

3.4　重建关于能量等级的多元混沌相空间

相较于单元相空间重构，多元相空间重构还原程

度更高，更加贴切于实际使用环境。多元相空间建立

的基本步骤[36]如下：

设有 Q 个变量时间序列 X1,X2,…,XQ，且 Xq={Xq,1,
Xq,2,…,Xq,n}，q=1,2,…,Q，N 为观测分量时间序列长度，

对应变量的时间延迟为 τ1,τ2,… ,τQ，嵌入维数为

m1,m2,…,mQ，此时多元相空间产生的相点数：

L = N −max
[(

mq−1
)
τq
]

(28)

相空间的 P 时间状态的坐标 Vp 如式 (29)所示，

多变量时间序列重构的相空间矩阵 V如式 (30)所示。
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VP =
[
x1,p, x1,p−τ1

, · · · , x1,p−(m1−1)τ1
; x2,p, x2,p−τ2

, · · · , x2,p−(m2−1)τ2
; · · · ; xQ,p, xQ,p−τQ

, · · · , xQ,p−(mQ−1)τQ

]
(29)

V =


VN0

VN0+1
...

VP

 =


x1,N0
x1,N0−τ1

· · · x1,N0−(m1−1)τ1
· · · xQ,N0

xQ,N0−τQ
· · · xQ,N0−(mQ−1)τQ

x1,N0+1
x1,N0−τ1

· · · x1,N0−(m1−1)τ1
· · · xQ,N0+1 xQ,N0−τQ

· · · xQ,N0−(mQ−1)τQ

...
...

...
...

...
...

x1,P x1,P−τ1
· · · x1,P−(m1−1)τ1

· · · xQ,P xQ,P−τQ
· · · xQ,P−(mQ−1)τQ

 (30)

P = N0,N0+1, · · · ,N (31)

N0 = max
1⩽q⩽Q

{(
mq−1

)
τq+1

}
式中： ，相空间总维数 M=m1+

m2+…+mQ。

根据 2023−03−10—2023−09−15的各指标时序数

据建立相空间，对数据集进行归一化处理，从而降低

最终预测误差。根据表 3给出的 m 和 τ 两个参数及

式 (31)进行相空间重构，计算可知 N0=78，相空间总

维数为 24，再将 S 值与 AC值去除其前 78个事件的

数据，然后作为额外的二维时序数据使用，最终得到

了一个大小为 26×1  421的神经网络向量矩阵，如

图 10所示。矩阵中，x1、x2、x3、x4、x5、x6 分别对应的

是 b 值、A(b)值、缺震、EEM值、S 值、AC值的时间

序列。预测时，将每一个状态点作为上一神经网络训

练集样本输出和下一神经网络训练集样本的输入。
 
 

b值 A(b)值 EEM缺震

X1,78 X2,78 X2,74 X2,26 X3,78 X3,55 X3,32 X4,78 X4,67 X4,1

X1,79 X2,79 X2,75 X2,26 X3,79 X3,56 X3,33 X4,79 X4,68 X4,2

X1,1 421 X2,1 421 X2,1 417
X2,1 369 X3,1 421 X3,1 298 X3,1 275 X4,1 421 X4,1 410 X4,1 344

X6,78X5,78

S值 AC值

X6,79

X6,1 421

X5,79

··· ··· ··· ··· ··· ··· ··· ··· ··· ···

···

···

···

···

···

···

······

X5,1 421

图 10    关于冲击危险等级的多元相空间矩阵

Fig.10    Multivariate phase space matrix for impact risk levels
 
 

4　基于 LSTM 模型的冲击危险预测
 

4.1　预测模型构建

长短期记忆神经网络 (LSTM)，是循环神经网络

(RNN)的一种特殊类型，LSTM通过刻意设计来避免

长期依赖问题，利用记忆单元来实现节点的不断更新，

从而解决了传统径向基神经网络中对于远距离数据

的依赖特性，使其能够更好地捕捉时间序列数据中的

长期依赖关系，并且在处理长序列数据时不易出现梯

度消失或梯度爆炸问题，在时间序列的预测方面具有

一定优势。冲击地压的发生是一个孕育演化的动态

过程，也是一个非线性的动力学过程，从能量的积聚

至突然释放，均伴随着物理信息等时间序列的转变，

为了更好的刻画这种转变特点，可以引入 LSTM预测

冲击危险等级，其网络架构如图 11所示。

c̃t

ωx f ωxi

LSTM网络具有 3个门控单元，包括输入门、遗

忘门和输出门，其中 xt 为当前状态的数据输入，ht-1 和

ht 分别为上一个时间点和本时刻的隐藏层输出值，ct-1

和 ct 分别为上一时刻和本时刻的细胞状态，ft 为遗忘

门输出值，it 和 分别为激活函数 σ 与激活函数 tanh
输出值，ot 为当前时刻输出门的输出结果。 、 、

ωxo ωh f ωhi ωho

ωhc ωc f ωci

ωco b f bi bo

bc

为输入 xt 到各个门的权重矩阵。 、 、 、

为隐藏状态 ht-1 到各个门的权重矩阵。 、 、

为细胞状态 ct-1 到各个门的权重矩阵。 、 、 、

为各个门的偏置项。

ft = σ
(
ωx f xt +ωh f ht−1+ωc f ct−1+b f

)
it = σ (ωxixt +ωhiht−1+ωcict−1+bi)
ot = σ (ωxoxt +ωhoht−1+ωcoct−1+bo)
c̃t = tanh(ωxcxt +ωhcht−1+bc)
ct = ftct−1+ ittanh(ωxcxt +ωhcht−1+bc)
ht = ottanh(ct) (32)

以多元混沌相空间的状态坐标作为多变量输入

数据集，将每天的冲击地压危险等级作为目标值。指

定 LSTM隐含层层数及其神经元个数等参数，再通过

网格搜索系统地遍历多种参数组合，使用交叉验证来

寻找最佳的模型参数，对学习率、批处理大小、优化器

类型 3个超参数进行寻优，从而生成 LSTM预测模型。

根据前 N 个事件的微震数据，预测间隔时间为 t 所对

应的第 N+1个事件的冲击地压危险等级。由此迭代

预测各个时间段的危险等级，PSR-LSTM预测模型架

构如图 12所示。 
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遗忘门

输入门 细胞状态

输出门

神经网络层 逐点操作 向量转移 向量连接 复制

σ

σ

σ

图 11    LSTM网络架构

Fig.11    LSTM network architecture
 

各指标时序数据

特征序列矩阵(a1,a2,···an)

多维相空间重构

a1,······,ap

LSTM(128)

a2,······,ap+1 am,······,ap+m

Dropout

LSTM(64)

Dropout

Dense

LSTM(128)

Dropout

LSTM(64)

Dropout

Dense

LSTM(128)

Dropout

LSTM(64)

Dropout

Dense

LSTM(128)

Dropout

LSTM(64)

Dropout

Dense

Adam优化

实际等级

损失计算

预测的等级

an-m an-(m+1) an

反归一化

预测能量等级时序序列E′

冲击危险等级分类结果

··· ···

··· ···

图 12    PSR-LSTM预测模型架构

Fig.12    PSR-LSTM prediction model architecture
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4.2　预测模型训练

图 13为该矿+400水平 B3巷道 2023−03−10—
2023−09−15当天最大能量值标准化后的分布特征，根

据重构的相空间训练集矩阵，按照 8∶2的比例对统

计范围内所有天的数据进行划分，最终得到的训练集

和测试集的样本比为 1 125∶281。
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日期(2023, 月-日)

图 13    日最大能量值分布特征

Fig.13    Daily maximum energy value distribution
 

采用隐含层为 2层 ，每层神经元数均为 50，
Dense层神经元数量为 1的 PSR-LSTM模型。经过

网格搜索超参数寻优后，确定 PSR-LSTM模型的训练

批次大小为 20，总的训练轮次为 120，采用 Adam的

随机梯度下降做优化，使用 2折交叉验证策略，确定

随机失活比例 Dropout为 20%，指定输入层数据特征

为 26，模式序列所含时间序列个数为 100，利用平均

绝对误差 (mean absolute error, MAE)做损失函数，根

据实时训练损失情况动态调整学习率，预测间隔时间

为 1 d，模型参数设置见表 4。
  

表 4    模型参数设置

Table 4    Model parameter Settings

参数 参数含义 数值

LSTM
隐含层层数 2

隐含层神经元数 50

Dense
连接层层数 1

连接层神经元数 1

batch_size 训练批次 [16, 20]

epochs 训练轮数 [100, 120]

optimizer 优化器 ['adam','Adadelta']

cv 交叉验证策略 2

Dropout 随机失活比例 0.2

Input_shape 数据特征形状 (100, 26)
 

为对比 LSTM与 PSR-LSTM两种方案下预测效

果，对 2种方案进行同样的参数设置后分别进行训练，

得到 LSTM的最佳训练轮次为 100。LSTM和 PSR-
LSTM预测实验的目标函数训练集损失值变化如图 14
所示。
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0
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lo
s
s

LSTM

PSR-LSTM

2.26×10-2

训练轮次

1.59×10-2

图 14    不同方案中目标函数损失值的变化情况

Fig.14    Changes of loss value of objective function in different

schemes
 

由图 14可知，当 0迭代至 20次时，2个模型下降

较快，迭代至 20次以后，2个模型损失下降幅度变得

平稳并逐渐达到最低。其中，LSTM的损失值稳定在

2.26×10−2，PSR-LSTM的损失值稳定在 1.59×10−2。通

过 损 失 函 数 的 情 况 来 看 ， PSR-LSTM模 型 优 于

LSTM。 

4.3　冲击危险等级评价指标

为有效评价急倾斜巨厚煤层掘进巷道冲击地压

危险等级的预测分类效果，采用混淆矩阵对结果进行

记录，在混淆矩阵中，真正例记作为 TP，含义为实际情

况为真且预测正确；真反例记作 TN，含义为实际情况

为假且预测情况为假；假正例记作 FP，即实际情况为

真而预测为假；假反例记作 FN，即实际情况为假而

预测为假。总的来说，真正例和真反例表示被正确预

测的数据，假正例和假反例表示被错误预测的数据，

并且样本总数为 TP、TN、FP、FN之和，混淆矩阵见

表 5。
 
 

表 5    分类结果混淆矩阵

Table 5    Confusion matrix of classification results

冲击危险等级类别 实际情况(正例) 实际情况(反例)

预测情况(正例) 真正例(TP) 假反例(FN)

预测情况(反例) 假正例(FP) 真反例(TN)
 

分类模型中，常用的评价指标有 Accuracy以及上

文提到的查准率 P、召回率 R 和 F1 值。其中，Accur-
acy是最直观的衡量模型好坏的指标，其反映了冲击

地压危险预测模型的分类准确性。本文通过以上 4
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个指标的分析对混淆矩阵记录的冲击危险等级分类

结果进行评估。F1 值计算公式见式 (20)，其余各指标

计算公式如下：

Accuracy =
TN+TP

TN+TP+FN+FP
(33)

P =
TP

TP+FP
(34)

R =
TP

TP+FN
(35)

 

4.4　模型预测结果

预测冲击危险的等级大小和发展趋势对于及时

的解危措施有重要的参考意义，针对该矿双巷掘进的

事件背景，结合本文的试验方法，分别利用 LSTM和

PSR-LSTM网络模型对所有历史数据进行预测，设定

预测时长为 1 d，最终得到的混淆矩阵结果分别如

图 15、16所示。根据每个类别的样本数量采用加权

平均的方式对混淆矩阵的各评估指标进行计算，结果

如图 17所示。
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图 17    各评估指标预测结果

Fig.17    Prediction results of each evaluation index
 

E′

由 图 17可 知 ， LSTM模 型 预 测 的 准 确 率 为

85.91%，F1 值为 86.27%；PSR-LSTM模型预测的准确

率为 91.35%，F1 值为 91.16%，由此可见，选用 PSR-
LSTM预测效果较好。基于 PSR-LSTM对统计范围

内标准化能量时序等级 的真实值和预测值对比如

图 18所示。
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图 18    能量时序等级真实值与预测值对比

Fig.18    Comparison of real and predicted values of energy time

series
 

由图 18中对于真实值和预测值的对比可知，整

体预测趋势与实际基本吻合。该矿 400B3巷掘进期

间共发生了 2次较大能量的动力显现事件，分别为能

量值为 33 000 J的“8·12”事件与能量值为 8 800 J
的“9·12”事件。通过测试结果不难发现，模型成功

预测到了这 2次事件，其中，对“8·12”事件预测的标

准化能量值 E'为 0.81，分类级别为 IV，对于“9·12”
事件预测的标准化能量值 E'为 0.70，分类级别为 III，
分类结果正确。测试结果表明模型的预测性能较好，

可实现对大能量事件提前预测，进而为现场防冲预警

提供参考。 
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图 15    LSTM混淆矩阵预测结果

Fig.15    Prediction results of LSTM confusion matrix
 

Ⅰ
Ⅱ

Ⅲ
Ⅳ

Ⅰ Ⅱ Ⅲ Ⅳ

878 27 1 0

63 186 1 0

7 12 96 0

0 0 2 33

真
实
等
级
情
况

预测等级情况

800

700

600

500

400

300

200

100

0

事件数/个

图 16    PSR-LSTM混淆矩阵预测结果

Fig.16    Prediction results of PSR-LSTM confusion matrix
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5　结　　论

1)通过实例分析，掌握了急倾斜巨厚煤层巷道掘

进过程中冲击地压 9项前兆微震信息指标的时空演

化规律，发现各微震信息指标对于预测大能量事件发

生的敏感性存在差异。为提升预测准确率，基于 GA-
RF算法优选了 b 值、A(b)值、缺震、EEM值、S 值、

AC值等 6项指标，各指标之间具有显著的相关性，对

预测冲击危险等级的敏感性较强。所用方法可结合

大数据技术实现灾变信息实时分析和模型的迭代更新。

2)构建了深度学习与多元混沌时序的急倾斜巨

厚煤层掘进巷道的冲击危险等级预测模型，将优选的

指标时序数据集基于改进的 C-C法求得各指标的嵌

入维数与时间延迟，对具有混沌特性的指标进行多元

相空间重构。重构后的矩阵由 LSTM神经网络训练

测试，预测出目标为未来一天的冲击危险发展趋势，

实现了不同冲击危险等级的预测划分，结果可作为急

倾斜煤岩发生冲击显现的重要预警指标。

3)运用混淆矩阵、Accuracy、F1 值等评价指标对

预测模型进行了综合分析，测试结果表明模型的预测

准确率达到了 0.913 5，F1 值达到了 0.911 6。实际应

用中，模型成功预测到了历史掘进期间发生的 2起大

能量事件，表明模型可实现急倾斜煤层掘进巷道大能

量事件的精确预测，能较好的满足现场需求。所提出

的基于深度学习与多元混沌时序的微震信息指标数

据融合驱动预测方法，可为急倾斜巨厚煤层掘进巷道

的防冲预警提供参考与借鉴。
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