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Intelligent prediction of time series and grade of rock burst in steeply inclined ultra-
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Abstract: Realizing the intelligent warning of rock burst in coal mine is of great significance to ensure the safety of mine
operation. Based on the intelligent classification prediction of rock burst occurrence time series in roadway of steeply in-
clined ultra-thick coal seam in a mine in Xinjiang, the spatio-temporal evolution of each microseismic information index

during roadway excavation was analyzed. The Random Forest optimized by Genetic Algorithm (GA) was used. RF se-
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lects a number of indicators with high performance in predicting the development trend of impact. Based on the Phase
Space Reconstruction (PSR) technology, the data is mapped to the high-dimensional space for reconstruction. LSTM is
trained to learn the characteristics of high dimensional data, and a prediction model of steeply inclined ultra-thick coal
seam rock burst (PSR-LSTM) based on deep learning and multiple chaotic time series is constructed. The results show that
each microseismic information index is sensitive to shock warning and has significant correlation with each other. Six mi-
croseismic information indexes with high performance in predicting the development trend of shock are selected. The time
series of multiple indicators has chaotic characteristics. After phase space reconstruction, LSTM learning and training can
effectively enhance the data utilization rate and prediction accuracy of the model. When the prediction time of the con-
structed PSR-LSTM model is specified as 1 day, the prediction accuracy can reach 0.913 5, and the F, value can reach
0.911 6. All of them are better than the unreconstructed LSTM model. The model can well predict the time series trend and
danger level of the rock burst in the excavation roadway of steeply inclined ultra-thick coal seam. The research method can
provide reference for the intelligent prediction and early warning of rock burst in the excavation roadway of steeply in-

clined ultra-thick coal seam.
Key words: steeply inclined ultra-thick coal seam; excavation roadway; rock burst; multivariate chaotic time series;

phase space reconstruction; deep learning
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Fig.1 Occurrence characteristics of steeply inclined coal and

rock in a mine
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Fig.2 Spatial distribution of large energy events of “8 * 12" and

microseismic events in previous week
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Fig.4 Variation characteristics of each index during roadway excavation
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