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Main influencing factors and research progress of zinc oxide desulfurization
performance at room temperature
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(1. College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; 2. State Key Laboratory of Clean and Ef-
ficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China)

Abstract: H,S is a colorless and highly toxic gas with rotten eggs-like odor, which widely presents in coal derived gas,
biogas, natural gas and other industrial gases. Besides corroding pipelines and poisoning downstream catalysts, it can also
endanger human health, even trace amounts of H,S can cause people death. Moreover, when H,S is released into the air,
its oxidation product, sulfur dioxide, can cause acid rain, which can seriously harm forests and pollute groundwater. There-
fore, in order to protect human health and ecological environment, maintain the operation of industrial production, H,S in
various industrial gases must be deeply removed. Zinc oxide has been widely used as polishing adsorbent in industrial pro-

cess. In fact, zinc oxide shows favorable thermodynamics at room temperature, it is capable of reducing H,S to less than
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0.1 mg/m’ and well meet the strict requirements of various processes and environmental regulations on the concentration

of H,S in feed gas. However, limited by reaction kinetics, the desulfurization activity of zinc oxide at room temperature is

very low. In order to improve the desulfurization activity of zinc oxide at room temperature, meeting the requirements of

increasingly stringent environmental protection regulations and emerging technology such as proton exchange membrane

fuel cells on H,S content, this study provides a summary of the possible desulfurization mechanism during zinc oxide des-

ulfurization process, highlighting the influence of key factors such as grain size and specific surface area, pore structure,

lattice defects, heterostructure and relative humidity on the desulfurization performance. The recent advance of supported

and porous nano zinc oxide desulfurizer is discussed. Furthermore, the analysis of the regeneration status of spent desul-

furizer is presented. This review aims to offer valuable insights for the optimal design of desulfurizer.

Key words: zinc oxide; desulfurization; mechanism; pore size; compound desulfurizer; regeneration
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