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Effect of structural properties of amine functionalized zeolite adsorbents support on
CO, adsorption performance
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Abstract: In order to investigate the influence of the structural properties of amine functionalized zeolite adsorbents sup-
port on their CO, adsorption performance and further explore effective methods for low-cost preparation of efficient CO,
adsorbents, different post-treatment methods were used to modify the pore structure of MCM—41 zeolite, and tetra-ethyle-
nepentamine (TEPA) was loaded onto these zeolites to prepare amine functionalized adsorbents. The properties of the
zeolite support were characterized using the methods such as N, adsorption-desorption experiment, scanning electron mi-
croscopy, X-ray diffraction and flourier transform infrared spectroscopy. The adsorption performance of the adsorbent was
evaluated using a thermogravimetric analyzer (TGA). The structural properties of the support, effects of active amine load-
ing and adsorption temperature on CO, adsorption performance were systematically studied, and the adsorption kinetics

and activation energy of the adsorbent was calculated. Finally, the stability of the adsorbent was evaluated through cyclic
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adsorption and desorption experiments. The results indicate that by designing the structure of the support reasonably, the

CO, adsorption performance of adsorbents based on different adsorption principles can be effectively improved. The mi-

croporous zeolites are more favorable for the physisorption process, while the hierarchical mesoporous zeolites with a

wide pore size distribution exhibit a better chemisorption performance than the microporous zeolites after loading with act-

ive amines. At 80 “C and 15% CO,, the maximum adsorption capacity of the adsorbent (M—N—T60) which modified in

structure and loaded with TEPA reached 4.04 mmol/g. After 10 adsorption and desorption cycles, the adsorption capacity

of M-N—T60 only decreased by 8.4%, demonstrating good cycling stability, indicating that the M—N—T60 is a potential

material for capturing CO, from flue gas.

Key words: CO, capture; amine functionalized adsorbent; MCM—41 zeolite; post processing modification; cycling sta-
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Fig.1 N, adsorption and desorption curves and pore size
distribution curves of HZSM—5 and MCM—41 series zeolite
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Fig.2 SEM images of MCM—41 series zeolite and M—N—T60 adsorbent
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Fig.8 CO, adsorption capacity and desorption efficiency of
M-N-T60 adsorbent at different temperatures

&2 HttscakdRIhRE L IRMIFIE CO, RIAE
Table 2 CO, adsorption capacity of amine functionalized

adsorbents in other literature

. TEPA R o 255 1t/ i
FEfh . W i 4 RSN
A% (mmol - g )

M-N 60 80 C. 15% CO, 4.04 ABIFSE
MCM-41 50 75 €. 100% CO, 1.60 [26]
Pore-expanded- 50 45 °C., 100% CO, 2.01 [12]

MCM-41

MCM-41 60 75 €. 12% CO, 2.80 [11]
SBA-15 50 75 °C.. 100% CO, 3.27 [27]
MSU-J 50 25 €. 100% CO, 3.73 [28]
PSNs 50 75 %€, 100% CO, 4.70 (71
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(1) Avrami’s fractional-order kinetics model.
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(2) Generalized fractional-order kinetic model.,
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(3) Double-Exponential (DE) kinetic model.
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Fig.9 Kinetic fitting curves and In k; with 1/T relationship dia-
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gram of M-N—T60 adsorbent at different temperatures
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Table 3 Fitting results of different kinetic models for the
adsorption process of M—N—-T60

Bl ) A RIS M-N-T60

ge/(mmol - &) 4.04(exp):3.93(fit)

ky/min" 0.803
Avrami’s Fractional-Order(AFO) 1147
R 0.981

ge/(mmol + &) 4.04(exp):4.03(fit)

ky, 0.352
Generalized Fractional-Order(GFO) m 2.499
n 2914
R 0.986

ge/(mmol - &) 4.04(exp):4.05(fit)

4, 0.887
Jey/miin”! 0.941

Double-Eexponential (DE) A 0.110
Jep/miin”! 0.130

R 0.991

R4 WEHREXARERE T M-N-T60 IR I i2AI
MEER
Table 4 Fitting results of the dual exponential model for the

adsorption process of M—N—T60 at different temperatures

Double-exponential model

R/ C

g/(mmol - g1 A, ky 4 ky R

60 3.33(exp);3.34(fit)  0.892 1.008 0.273 0.042 0.984
70 3.68(exp);3.70(fit)  0.860 0.975 0.112 0.108 0.982
80 4.04(exp);4.05(fit) 0.887 0.941 0.110 0.130 0.991

90 3.00(exp);2.99(fit)  0.687 0.778 0.283 0.778 0.975
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Fig.10 Cyclic adsorption and desorption performance of

M-N-T60 adsorbent at different temperatures
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