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摘　要：以催化剂为核心和焦油提质为目的的低阶煤热解技术是保障国家能源安全和实现“双碳”

目标的煤炭清洁高效转化技术。鉴于煤焦油品质调控和催化剂表面积炭行为的复杂性，阐述了金

属、金属氧化物、天然矿物质、分子筛和炭基催化剂对煤和热解挥发物的催化作用及其对热解产

物分布和组成的影响，并对比分析了各类催化剂的优缺点。探讨不同催化剂物理化学性质的区别

及其与催化性能之间的关系，结合煤及热解挥发物中 C—C、C—H、C=C、—OH、C=O、

C—O 和—COOH 等化学键的断键行为，揭示了不同催化剂的作用机制。在此基础上，针对催化过

程中存在的焦油产率低及提质效果差的问题，提出了利用金属尤其是过渡金属改性催化剂活化热

解体系中的内部小分子氢供体和外部固体/气体氢供体对重质组分裂解碎片原位供氢的方法，实现

焦油产率的提高及焦油品质的改善。同时，针对催化剂易积炭失活问题，分析了积炭的物理化学

性质和组成以及积炭形成的原因。从催化剂设计及热解反应体系出发，分析了多种有效抑制积炭

的途径，如多级孔与金属活性位点的组合效应、双金属改性调控 Brønsted 和 Lewis 酸性位点的比

例、酸碱双功能催化剂的开发以及引入 H2O、CH4、C2H6 和 CH3OH 等富氢小分子调控挥发物组成

等，以期为低阶煤催化热解技术的发展提供理论基础。
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Abstract: The low-rank coal pyrolysis technology with tar upgrading by catalyst is a clean and efficient coal conversion
technology that ensures national energy security while also meeting the “carbon peaking and carbon neutrality” goals. The
catalytic effects of metals, metal oxides, natural minerals, zeolites, and carbon-based catalysts on coal and pyrolysis volat-
iles are discussed due to the complexity in controlling tar quality and coke behavior. It also evaluates the effects of each
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type of catalysts on the distribution and composition of pyrolysis products, comparing their advantages and disadvantages.
The differences in the physical and chemical properties of various catalysts, as well as their relationship with catalytic per-
formance, are explored in detail, and the action mechanism of various catalysts is revealed by combining the bond break-
ing behavior of C—C, C—H, C=C, —OH, C=O, C—O and —COOH in coal and pyrolysis volatiles. Based on the stud-
ies above, aiming at the problems with low-tar yield and poor-tar quality during the catalytic process, it is proposed to use
internal small molecule hydrogen donors and external solid/gaseous hydrogen donors activated by metal, particularly the
transition metal  modified catalysts,  for  in-situ hydrogen supply to  heavy components  cracking fragments  in  order  to   in-
crease tar yield and improve tar quality during the catalytic process. Furthermore, to solve the problem of catalyst deactiv-
ation  caused  by  coke,  the  chemical  and  physical  characteristics  and  composition  of  coke,  as  well  as  the  causes  of  coke
formation, are examined in depth. Several effective strategies to coke inhibition are proposed, commencing with the design
of the catalysts and the pyrolysis reaction system. Combining metal active sites with multi-level pores, bimetallic modific-
ation to control the ratio of Lewis and Brønsted acid sites, the synthesis of dual-functional catalysts with basic and acidic
properties, and the introduction of hydrogen-rich small molecules such as H2O, CH4, C2H6, and CH3OH to control volat-
iles composition all contribute to effective coke suppression methods. The study can serve as a theoretical basis for the ad-
vancement of catalytic pyrolysis technology for low rank coal.
Key words: low rank coal；pyrolysis；volatiles；catalytic cracking；tar upgrading
 

尽管石油制品作为燃料和原料在社会经济发展

中起着关键的作用，但随着原油储量危机和环境问题

加剧，对生产液体燃料和化学品的替代原料提出了迫

切需求[1]。在全球范围内，低阶煤 (褐煤和次烟煤)占
世界已探明煤炭总储量的 47.0%[2]。目前，低阶煤的

利用方式以直接燃烧或气化为主，被认为是以对环境

不友好的方式低效利用煤炭资源[3]。热解技术是生产

液体焦油，实现低阶煤清洁高效转化利用的有效途径，

也是保障国家能源安全和实现双碳战略有机结合的

重要落脚点[1, 3]。煤焦油可作为石油替代品生产柴油

和汽油等燃料油，也可用于生产高附加值化学品，如

苯、甲苯、乙苯、二甲苯和萘 (BTEXN)及苯酚、甲酚

和二甲酚 (PCX)等[4]。煤焦油经过深加工，其产品可

广泛应用于塑料、涂料、合成纤维、合成橡胶、医药、

农药和耐高温材料等领域[5]。然而，煤焦油沸点大于

360 ℃ 的重质焦油质量分数占 50.0%～70.0%、黏度

大且易在高温下反应，容易积炭、结焦及凝结粉尘，造

成管路及设备堵塞，影响热解系统的长周期稳定运行，

阻碍热解技术的发展及工业化推广应用[6-7]。因此，以

催化剂为核心和以焦油提质为目的的催化热解技术

受到广泛关注，通过催化剂可改变煤热解挥发物的反

应路径，裂解重质焦油，调控热解产物的分布和组成，

提高焦油中高附加值化学品的选择性[1]。然而，催化

剂在催化裂解煤热解挥发物时，易导致焦油产率降低，

甚至过度降低[8]。另外，催化剂在煤热解过程中易积

炭，堵塞催化剂孔道或覆盖活性位点而导致失活，限

制了其有效应用[9]。

笔者主要从催化剂对煤热解焦油品质和产率的

调控及其表面积炭行为的角度出发，阐述不同类型催

化剂对煤和热解挥发物的催化作用及其对热解产物

分布及组成的影响，进一步探讨不同催化剂物理化学

结构的区别及其与催化性能之间的关系，揭示不同催

化剂的作用机制。在此基础上，笔者从催化剂设计及

热解反应体系出发，提出在保证焦油产率的前提下，

实现轻质焦油产率最大化的方法。针对热解过程中

存在的催化剂积炭失活问题，分析积炭的物理化学结

构及组成，结合催化剂积炭失活的原因，提出抑制催

化剂表面积炭的有效方法。 

1　不同类型催化剂对低阶煤及热解挥发物的
催化作用及作用机制

金属、金属氧化物、天然矿物质、分子筛和炭基

催化剂等是目前用于低阶煤及热解挥发物催化转化

的主要催化剂类型，但其物理化学性质各异，催化作

用及作用机制不同，对焦油品质、热解产物分布和组

成的影响也不相同。煤的催化转化过程中，无论催化

剂机械混合到煤中还是负载或离子交换在煤表面，催

化剂对煤裂解断键及挥发物反应均起催化作用；煤热

解挥发物的原位催化转化过程中，催化剂主要对挥发

物反应起催化作用。 

1.1　金属及金属氧化物催化剂

碱金属和碱土金属 (AAEMs)、过渡金属 (Ni、Mo、
W、Co、Zn和 Fe等)对煤及煤热解挥发物的催化作

用显著。YAN等 [10]使用 Py-GC/MS研究了 AAEMs
对 3种低阶煤热解产物组成及分布的影响。研究结

果表明，负载在煤表面的 AAEMs可将挥发物中的

3,5−二甲基苯酚和邻苯二酚等酚类和苊、菲、蒽和荧

蒽等多环芳烃裂解成苯、甲苯、二甲苯、萘和苯酚等
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轻质芳烃。LIANG等[11]研究了 Mo和 Fe基催化剂对

内蒙古煤 (NM)和新疆煤 (XJ)2种低阶煤的催化作用，

添加 Mo和 Fe基催化剂后，焦油产率分别为 NM煤

的 1.4和 2.2倍，为 XJ煤的 1.4和 1.4倍。Mo和 Fe
基催化剂有利于煤的解聚，促进了煤中化学键的断裂，

增强了挥发物中氢自由基与长链烃自由基之间的反

应，从而提高了焦油产率及焦油中沸点在 180～230 ℃
和 230～300 ℃ 轻质馏分的比例。离子交换在煤表面

的 AAEMs、Co和 Ni可降低煤热解反应的活化能，破

坏煤中不饱和烃中 π电子云的稳定性，削弱煤结构中

苯环 C=C和 C—H键作用力，促进挥发物中多环酚

类化合物裂解为低环酚类化合物，多环芳烃裂解为低

环芳烃，对焦油中的萘及其衍生物表现出较好选择性，

且过渡金属 Co和 Ni的作用更显著[12]。另有研究表

明，AAEMs和过渡金属对焦油提质起到协同作用 (图 1)，
AAEMs与挥发物中的含氧官能团结合生成C−O−AAEM
和 COO−AAEM，并将活性氧位点释放到活性炭位点，

导致 Fe催化剂与活性氧位点结合在炭表面形成

Fe2O3 和 Fe—(O)—C促进部分挥发物裂解为单环苯

类、单环酚类和气体[13]。金属氧化物由于制备工艺简

O−2 O2−
2

单、价格低廉、来源广泛等优点，受到了广泛关注。金

属氧化物对煤及热解挥发物的催化作用见表 1。无论

是单一金属氧化物还是复合金属氧化物的金属和活

性氧 ( 、 和 O2−等)等活性中心均影响 PAHs中
π电子云的稳定性，促进 PAHs裂解及 PCX、BTX等

轻质焦油的形成[14]。此外，不同金属氧化物的催化作

用效果和作用机制存在差异，多环芳烃的裂解反应可

以通过侧链的脱烷基化或开环反应进行。Al2O3 呈酸

性可促进挥发物的脱烷基 (Cal—Cal和 Car—Cal等)
和脱氢反应提质焦油[15-16]。Fe2O3 则通过促进挥发物

的脱氧反应 (—OH、C=O、C—O和—COOH)和裂解

反应 (如 C—C和 C—H)提质焦油[17]。CaO呈碱性与

煤热解挥发物中的酸性基团 (—OH和—COOH等)
作用，发生式 (1)～(6)的化学反应[18]，促进含氧化合物

的裂解，有效提质焦油并释放 CO2
[15, 18]。

CaO+R−COOH+R′−COOH −→ R−COO−Ca−
OOC−R′+H2O

(1)

CaO+CO2 −→ CaCO3 (2)
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图 1    挥发物在 Fe和 AAEMs催化作用下的反应路径[13]

Fig.1    Reaction pathways of volatiles under the catalytic effect of Fe and AAEMs[13]
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CaO+H2O −→ Ca(OH)2 (3)

Ca(OH)2+R−COOH+R′−COOH −→ R−COO−
Ca−OOC−R′+2H2O (4)

CaCO3+R−COOH+R′−COOH −→ R−COO−
Ca−OOC−R′+H2O+CO2 (5)

R−COO−Ca−OOC−R′ −→ R−Ca−R′+CO2 (6)
 

1.2　天然矿物质催化剂

方解石，白云石，高岭石、镜铁矿、褐铁矿、菱铁

矿、赤铁矿和磁铁矿等天然矿物质对煤及其热解挥发

物均具有催化作用，有利于提高焦油中低沸点化合物

的质量分数[23]。矿物质的催化活性主要与含有的金

属活性组分相关，白云石和方解石的主要活性组分是

CaO，高岭石是 Al2O3，铁矿石是 Fe、Fe2O3 和 Fe3O4，

其中对焦油催化提质效果较好的是褐铁矿、赤铁矿和

高岭石。赤铁矿和镜铁矿等对焦油中大分子化合物

的裂解及含氧化合物的脱氧作用显著，可将焦油中氧

的质量分数降低 36.9%[24]。SONG等 [25]在两段固定

床反应器中研究 2种赤铁矿 (HA和 HB)对煤热解挥

发物的催化提质作用，认为 HA和 HB可将焦油中的

沥青质量分数分别降低 7.6% 和 8.9%，但焦油产率同

时降低。如图 2所示，HA和 HB因活性组分的差异，

使其催化作用明显不同。以 Fe为主的 HA对脂肪烃

(C—C和 C—H键)的裂解反应影响较大，而以 Fe2O3

和 Fe3O4 为主的 HB对含氧化合物的脱氧反应 (C—O
键)影响较大。挥发物通过裂解、环化和芳构化等一

系列反应转化为芳香烃。褐铁矿对挥发物中脂肪烃

和含氧化合物转化同样具有较高的催化活性，苯、甲

苯和萘可分别增加 130.0%、30.0% 和 180.0%，但菱铁

矿和磁铁矿影响不大，这主要归因于褐铁矿 Fe组分

较多，相比铁氧化物更能促进 BTEXN的形成[26]。对

模型化合物 (C19 烷烃和邻甲酚)的测试表明，酚类物

质很容易吸附在褐铁矿活性组分表面，形成表面苯氧

基物质，最后转化为苯和甲苯 [27]。HCl改性高岭石

(AMKs)可增加轻质焦油和焦油中的芳烃，HCl处理

去除了部分高岭土的骨架 Al产生了丰富的微孔/介孔

和酸性位点，使单环芳烃和萘分别提高 3.5～4.2倍和

1.2～1.8倍[28]。如图 3所示，在 AMKs酸性位点作用

下，长链烷烃可以通过裂解、异构化、环化和芳构化转

化为芳烃，而烯烃可以通过 Diels-Alder反应生成芳烃，

酚类和含氧化合物的脱氧 (脱羧、脱羰基化和脱水)和
齐聚反应形成芳烃和烯烃。
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图 2    挥发物在赤铁矿上催化裂解机理[25]

Fig.2    Possible mechanism of the catalytic cracking of

tar over hematite[25] 

1.3　分子筛催化剂

Y型、USY、ZSM-5、ZSM-22和 HZSM-5等分子

筛催化剂具有离子交换性能、可调变的孔结构和酸性

活性位点，并具有良好的热稳定性和水热稳定性。由

表 2分子筛对煤及热解挥发物的催化作用可知，分子

 

表 1    金属氧化物对煤及热解挥发物的催化作用

Table 1    Catalytic effects of metal oxides on coal and pyrolytic volatiles

反应器 原料煤 催化剂 催化作用 文献

热重分析仪 神府煤

霍林格勒煤

CaO

Al2O3

金属氧化物对煤热解反应均有促进作用，热解活化能和指数前因子均有所降低，特征温度发生变化 [15]

Py-GC-MS 平朔煤 CaO

Fe2O3

Fe2O3对16种多环芳烃(PAHs)的催化裂解效果强于CaO，CaO对PAHs最大裂解率为52.9%，Fe2O3对

PAHs最大裂解率为60.6%，Fe2O3可促进酚类化合物的生成

[14]

流化床 神木煤 CaO CaO裂解了挥发物中的长链烷烃，促进焦油中的PCX和苯、甲苯和二甲苯(BTX)等轻质芳烃的生成，

降低了焦油的(O+N+S)/C比值

[19]

固定床 平朔煤 金属

氧化物

Fe2O3、MnOx,、CuO和NiO(TMOs)，TMOs导致焦油收率和重焦油质量分数降低，轻质焦油收率及

H2、CO2、CO等气体产率增加

[20]

Py-GC-MS 宁东煤 Fe2O3 Fe2O3促进了含氧化合物和PAHs的裂解，单环芳烃的形成 [17]

固定床 神木煤 CaO-

Fe2O3

Fe2O3和CaO之间存在协同效应，促进PAHs的裂解，增加气体和焦油中一些高附加值化合物的产率，

如：短链烷烃、萘、芴、菲

[21]

固定床 胜利煤 复合金属

氧化物

NiO-MgO-γ-Al2O3使轻油质量分数从6.0%增加至49.0%。裂解了部分蒽、芘、苊和荧蒽等多环芳烃，

促进焦油中的PCX和BTX的形成

[22]

1070 煤　　炭　　学　　报 2024 年第 49 卷



筛及改性分子筛均对 BTEXN表现出较好选择性，催

化活性主要与孔结构、酸性及负载的金属组分相关。

如图 4所示，煤热解挥发物中的甲氧基芳香键和醚键

可被 Lewis-Brønsted酸裂解，C—OH通过氢质子在酸
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图 3    AMKs作用下挥发物的提质机理示意 [28]

Fig.3    Schematic diagram of the possible upgrading mechanism for volatiles over AMKs[28]

 

表 2    分子筛对煤及热解挥发物的催化作用

Table 2    Catalytic effects of zeolites on coal and pyrolytic volatiles

催化剂
反应

温度/℃
原料 催化作用 文献

ZSM-22

CoOx/ZSM-22

450 榆林

低阶煤

选择性地促进了脂肪族、芳烃和酚类物质的形成，裂解了部分醇类和含氮化合物，尤其是弱酸位点

数量较多、孔径较大的CoOx/ZSM-22

[35]

ZSM-5 600 白银花

褐煤

低SiO2/Al2O3 比的ZSM-5总酸度较高，对挥发物表现出较好的裂解性能，产生更多轻质芳烃，特别是

ZSM-5摩尔比(w(SiO2)/w(Al2O3)=50)，生成的BTEXN收率达20.8 mg/g

[29]

HZSM-5 700 内蒙古

褐煤

HZSM-5的催化提质作用与Brønsted、Lewis酸位点和孔隙结构密切相关。具有C—O桥键和脂肪族结

构的挥发物更易在催化剂作用下转化成BTEXN

[38]

硫酸改性

HZSM-5

600 胜利褐煤 SO4 
2−的络合低浓度的骨架外Al使硫酸化强度强于酸化脱Al强度，增加了中等强度酸性位点的数量，

促进了BTEXN的生成

[39]

金属改性

HZSM-5

500～700 胜利褐煤 Mo、Ni、Fe改性HZSM，由于金属和酸位的参与，部分含氧化合物转化为芳族化合物，特别是

Ni/HZSM-5可生成芳烃比例为94.2%的焦油

[30]

金属改性

HZSM-5

600 神东煤 BTEXN等轻质芳烃在Zn、Mo、Ni、Fe和Ga改性HZSM-5催化剂上的收率分别提高了1.5～3.1倍，这

种差异归因于对挥发物的裂解、脱氢和脱氧活性

[31]

Y型分子筛 700 宁夏煤 通过脱Al和脱Si合成的多及孔Y型分子筛促进了挥发物的传质，使BTEXN收率从5 600 ng/mg增加到

18 800 ng/mg

[36]

硝酸铵改性

Y型分子筛

700 内蒙古煤 NH4 
+与分子筛离子交换增加了Brønsted酸量，促进重质芳烃向BTEXN转化。Brønsted/Lewis较高的分

子筛能更能催化具有致密芳香结构的煤热解挥发物

[40]

酸改性USY 600 白银花

褐煤

HNO3、HCl和H2C2O4改性的分子筛，Brønsted/Lewis酸位比和介孔体积增加，提高了轻质焦油尤其是

萘和甲基萘的选择性，但焦油产率显著降低

[41]

水热和HNO3

处理HY

600 白银花

褐煤

水热处理扩大了孔径，降低了强酸量。硝酸处理去除了非骨架Al，增加了比表面积。萘和甲基萘的

收率分别提高了8.9倍和6.8倍

[42]

Ga/HZSM-5 600 胜利褐煤 Ga原子掺杂到HZSM-5骨架产生强Lewis酸位，Ga和酸性位促进了芳构化过程，BTEXN收率可达

29.3 mg/g，Ga/HZSM-5在6次循环反应中保持较高的稳定性

[43]

Ga/ZSM-5 450 神东煤 与ZSM-5相比，Ga改性ZSM-5催化性能显著提高，轻馏分收率和靶向产物均有显著提高，BTEXN收

率可高达31.8 mg/g

[32]

NiO/ZSM-5 600 胜利褐煤 焦油中的沥青质量分数降低，轻油、酚油、萘油、洗油和蒽油的质量分数增加；焦油中的H/C摩尔比

提高，N和S的质量分数降低，改善了焦油品质

[44]
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性位点的转移形成烯烃，挥发物中的含氧化合物通过

裂解和氢转移反应被催化脱氧[29]。芳香烃侧链的脱

烷基化，醇类和酚类化合物的脱羟基化，烷烃和烯烃

的芳构化反应促进了重质焦油向轻质焦油的转化，尤

其是促进了 BTEXN的形成[30-34]。此外，酸性位点有

利于多环芳烃的开环反应，促进 3～5环的芳香烃转

化为 1～2环的芳香烃[35-36]。多环芳烃先发生加氢反

应，饱和环烃在酸性位点的作用下发生开环反应，最

后形成轻质芳香烃 (图 5)[36]。分子筛在 400～700 ℃
甚至更高的温度下均可有效改善焦油品质，增加

BTEXN产率，但挥发物的催化裂解在消耗分子筛酸

性位点的同时伴随积炭的形成。与使用前的分子筛

相比，使用后分子筛的总酸量显著降低，强酸性位点

和弱酸性位点的数量明显变少，孔体积和结晶度等物

理性质也明显变差[9, 37]。 

1.4　炭基催化剂

炭基催化剂是一种具有发达孔隙结构、固有

AAEMs和丰富表面基团的一种廉价环保材料，其作

为热化学转化产品，可以从煤或生物质的热解或气化

中获得[45-49]。由表 3炭基催化剂对煤及热解挥发物

的催化作用可知，活性炭、生物质半焦、煤半焦、固体

废弃物衍生炭材料及金属改性炭材料均有利于沥青

等重质焦油的裂解和焦油品质的改善。炭基催化剂

较大的比表面积可增强挥发物与活性位点之间的相

互作用，为挥发物在孔隙中充分反应提供充足的空间，

从而促进煤热解挥发物的催化转化[1, 45, 50]。炭结构缺

陷可作为焦油提质的活性位点，促进焦油中部分重馏

分转化为轻馏分和气体[51]。炭基催化剂尤其是生物

质焦具有 C=O、—OH、C—O、O—C=O和—COOH
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等丰富的含 O官能团[52]，部分含 O官能团可形成酸

性中心，与多环芳烃的带负电荷的 π电子系统结合，

促进多环芳烃的裂解[53]。含 O官能团中的活性极性

氧可通过偶极力促进烃类转化，形成部分 CHx·，H·

和 OH·等小分子自由基，稳定挥发物中的大分子自

由基碎片而有效提质焦油[54]。如图 6所示，炭基催化

剂中的—SO3 有利于活化挥发物中的水分子生成 H·

和 OH·，稳定热解体系中的自由基碎片而促进轻质

焦油的生成[55]。碱性含 N基团易吸附热解挥发物中

的弱酸性化合物，将其催化转化生成酚类和芳烃，并

释放出更多 CO2 和 H2O
[56]。在 600 ℃ 等较高催化温

度下，炭基催化剂表面含有的碱性含 N和酸性含 O
基团会在挥发物的催化裂解过程中消耗，从而改变炭

基催化剂表面活性位点的数量及酸性/碱性[56]。如图 7
所示，挥发物可以被 AAEMs活性位点吸附裂解形成

轻质焦油、气体和新的自由基 (H·和 OH·)，AAEMs

等金属阳离子在挥发物中起着交联点的作用，金属阳

离子与挥发物之间的连接键反复形成和断裂[57]。

总之，催化剂对煤及煤热解挥发物的催化活性及

焦油提质效果的行为可以通过轻质焦油和沥青组分

的质量分数变化进行评价，轻质焦油质量分数越高及

沥青质量分数越低，催化剂对焦油的提质效果越好。

综合国内外研究结果，相比煤单独热解及惰性催化剂

SiO2 催化热解下的空白实验，轻质焦油质量分数普遍

可增加 10.0%～50.0%，沥青质量分数普遍可降低

10.0%～60.0%。金属、金属氧化物、天然矿物质、分

子筛和炭基催化剂对焦油的催化提质作用和作用机

制各具优势，且与其物理化学性质密切相关。AAEMs
是煤及热解挥发物的有效交联点，可与含氧官能团结

 

表 3    分子筛对煤及热解挥发物的催化作用

Table 3    Catalytic effects of carbon-based catalysts on coal and pyrolytic volatiles

催化剂 制备方式 催化作用 文献

改性

活性炭

HCl处理活性炭(AC)

水蒸气和KOH对商业

活性炭活化改性

轻质焦油质量分数与活性炭介孔表面积呈良好的线性关系，AC中的矿物有利于焦油的改

质。改性AC提高了轻油和萘油的质量分数，降低沥青质量分数，对苯和萘(可达50.3%)表

现出良好的选择性

[50]

多孔

炭材料

生物质焦与煤混合热解

并炭化后的炭材料及水

蒸气活化后的炭材料

生物质焦影响炭材料的催化作用。未活化的炭材料有利于提高沸点低于170 ℃的轻油的

收率；活化后的炭材料由于炭结构缺陷增加，比未活化的炭材料更有利于沥青的裂解，

也更容易形成积炭

[54]

煤半焦 煤快速热解产物 在上部行床和下部移动床组成的集成反应器中，保证焦油产率的前提下，半焦可使轻质

焦油质量分数提高至69.0%。半焦对挥发物的催化提质可通过温度和半焦床层厚度控制

[51, 58]

稻草

半焦

快速热解及慢速

热解制备

热解方式影响AAEMs和含O官能团在半焦表面的分布，快速热解制备的半焦的催化裂解

效果较好，焦油中溶于正己烷轻质组分可增加30.3%，促进部分多环芳烃裂解及单环芳烃

和单环酚的生成

[53]

废红油

衍生炭材料

废红油加热、过滤，

过滤后的固体热解

红油衍生炭材料对煤热解挥发物的催化活性高于半焦及活性炭，其较高的比表面积、较

多的缺陷和含硫官能团促进了重质焦油向轻质焦油的转化

[55]

煤半焦 不同热解终温和时

间下制备的半焦

热解终温和时间影响半焦表面的官能团，半焦表面的OH、C−N和C−O−C官能团是影响挥

发物催化裂解的主要因素，其有助于沥青的裂解

[48]

煤半焦

活性炭

煤热解产物半焦

商业椰壳活性炭

活性炭对挥发物的催化效果强于半焦，焦油中的重质组分(沥青)转化为轻质焦油和气体，

轻质焦油质量分数可增加30.4%，催化剂的矿物质、高比表面积和缺陷结构是促进焦油提

质的主要因素

[59]

半焦 生物质、褐煤、烟煤、

无烟煤和石墨热解

半焦的表面积与其催化性能没有直接的相关性。低阶煤炭材料的半焦含有丰富的官能团

和高度无序的碳结构，半焦结构变化对焦油产量和焦油成分产生了巨大影响

[60]

金属

改性半焦

浸渍法(ZnCl2、CoCl2、

NiCl2和CuCl2)

金属改性炭基催化剂表面酸性位点较多，对挥发物的提质效果优于炭基催化剂，其活性

顺序为：Co-char > Ni-char > Cu-char > Zn-char。Ni-char作用下，轻质焦油质量分数可分

别提高32.7%，焦油中N、S质量分数可分别降低45.6%和43.5%

[6]
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图 6    挥发物在含—SO3H炭基催化剂上的反应过程[55]

Fig.6    Reaction process of volatiles on a carbon-based catalyst

containing —SO3H
[55]
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合生成 C—O—AAEM和 COO—AAEM，连接键在热

解过程中反复断裂和生成，从而提高焦油品质[12-13]。

过渡金属在催化热解过程中表现出良好的催化加氢

性能，这些金属元素电子结构中只含 1个 d电子的空

轨道，d电子可与 H2 中的 s电子配对，发生化学吸附

生成氢自由基，并提高氢自由基对煤或挥发物裂解产

生的活性烃碎片的供给速率，促进焦油中高附加值化

合物的生成[61-62]。金属氧化物尤其是 CaO、Fe2O3 和

Al2O3 的金属原子、晶格氧及晶格氧脱氧形成的氧空

位对催化煤及热解挥发物发挥了重要作用，其可破坏

挥发物中大分子化合物的骨架和侧链，促进小分子化

合物的形成[14, 17, 20]。天然矿物质的催化作用与金属

及金属活性组分密切相关。分子筛的催化作用主要

与酸性位点相关，分子筛中的酸性位点 (Lewis和
Brønsted)有助于促进挥发物中C—C、C—O和C—OH
键的断裂和 BTEXN的产率的提高[29, 35, 40, 63-64]。炭基

催化剂的催化作用则与炭结构，表面基团、AAEMs等
因素相关，可通过促进重质焦油的裂解和小分子气体

的活化供氢使重质焦油向轻质焦油转化[52-53, 57]。

相比其它催化剂，分子筛和炭基催化剂更易通过

改变物理化学性质调变其催化性能，尤其是炭基催化

剂。通过水热处理、酸处理、调变 SiO2/Al2O3 比例、

金属的负载方式及负载量均可改变分子筛的催化活

性，有效提质焦油[29-32, 35-36, 38-43]。炭基催化剂通过改

变原料 (生物质、煤和固体废弃物)可有效调变其炭结

构类型，通常物质的等级越低其热解后所制备的炭材

料缺陷越多[8, 48, 60]；通过改变原料的热解条件 (热解温

度、热解时间、升温速率)可调变炭基催化剂的孔结

构和表面官能团 [53]；通过改变活化方式 (物理活化：

H2O、 CO2 和 H2O/CO2； 化 学 活 化 ： KOH、 K2CO3、

KHCO3、CH3COOK、ZnCl2、H3PO4 和 NaOH)可有效

调变其孔结构 (图 8)、表面基团和 AAEMs的分

布[52, 65-68]。如图 9所示，通过 KOH活化的炭基催化

剂表面的含氧基团明显增加 [69]；通过 NH3 和 H2SO4

等表面改性炭基催化剂可有效调变其表面的含 N和

含 S基团[70-71]；通过浸渍法和离子交换法负载金属可

有效调变炭基催化剂表面的金属分布及价态[8, 72]。此

外，通过过渡金属和金属氧化物改性可有效调变炭基

催化剂的酸碱性，通常过渡金属会增加炭基催化剂的

 

Ca2+

K+ Mg2+

H2O

CO2O O

O

OHOMg

Mg

Mg

OO

O

O

K

K

K

Ca
OH

OH
Metal ions

Coal-char particle

·H

·OH

H2
O

H2
O

H2
O

·OH

·H

Coal-char particle with pore structure

O

CH
· CH2

·
C
·

M-Metal ions   R-Free radicals

Coal-char

volatiles

H2O H2O

Coal-gas

Coal-tar

Coal-char

volatiles

Coal-gas

Coal-tar

Decomposition

Steam reforming: CnHm+nH2O→CO+H2

Steam reforming: CnHm+nH2O→CO2+H2

Thermal cracking: CnHm→C+CxHy+gas

Cracking: CnHm(heavy tar)→CxHy(light tar)

Hydro cracking: CnHm+H2→CH4

Hydro dealkylation: CnHm+H2→CH4+CxHy Oxidation

R-(H/OH)

CO

Ca
Ca

图 7    炭基催化剂对挥发物的催化作用机理示意 [57]

Fig.7    Schematic diagram of catalysis mechanism of carbon-based catalyst for volatiles[57]
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Lewis酸性位点，CaO和MgO会增加碱性位点[73-74]。

然而，不同种类催化剂对焦油的催化提质仍面临

许多问题。天然矿物质和金属氧化物催化剂需要解

决轻质焦油产率低及催化提质效果差的问题，而金属、

分子筛、活性炭催化剂催化裂解活性强，挥发物极易

在表面过度裂解导致焦油产率显著降低且易形成积

炭覆盖活性位点造成催化剂积炭失活，特别是微孔为

主的催化剂，如微孔分子筛、活性炭不利于大分子焦

油的传质，积炭失活更为显著[41-42, 75]。因此，焦油、轻

质焦油产率低及催化剂积炭失活是焦油催化提质过

程中亟需解决的关键问题。 

2　供氢体系下催化剂对焦油产率及品质的有
效调控

煤热解是一个富炭缺氢的过程，挥发物裂解自由

基碎片缺乏富氢小分子自由基稳定是导致焦油产率

低及焦油品质差的主要原因。挥发物自身存在 H2、

CH4 和 C2H6 等富氢小分子，通过催化剂有效活化为

挥发物尤其是重质组分裂解碎片原位供氢是提高焦

油产率改善焦油品质的有效途径[76]。从催化剂自身

构筑出发，利用具有加氢作用的金属尤其是过渡金属

改性催化剂活化热解体系中的内部小分子氢供体，是

提高焦油产率和改善焦油品质较为普遍的方式。研

究发现，Co、Mo和 Ni改性 HZSM-5影响了褐煤热解

挥发物提质过程中的脱氧和氢转移途径，CH4 和 H2

可在金属活性位点活化为 H·和 CHx·等富氢自由基，

稳定大分子芳香烃裂解碎片 ，有效增加焦油中

BTEXN的产率[30, 37]。金属改性分子筛 (Zn、Mo、Ni、
Fe和 Ga等)对促进涉及氢物种的反应 (例如脱氢/加
氢脱氧反应)具有较高活性。金属组分促进了热解体

系内的氢转移过程，链烃脱氢形成的氢可以稳定煤初

始热解阶段产生的自由基碎片。此外，金属组分还可

以有效地促进酚类化合物加氢脱氧为芳香烃，抑制大

分子化合物的聚合反应，有效利用热解体系中的富氢

小分子并提质焦油[31-32]。如图 10所示，以 Ga改性的

ZSM-5为例，Ga可有效活化烷烃和小分子富氢气体

中的 C—H键对热解体系有效供氢，促进了挥发物的

脱氧和氢转移反应，从而提高了轻质焦油产率[32]。通

过 Zr和过渡金属 (Ni、Fe和 Co)改性高岭石可促进

氢在挥发物中的重新分布，从而提高焦油质量 [77]。
—CHx—桥键、氢化芳烃和侧链中的氢原子首先在金

属位点上吸附及活化，然后立即与挥发物中生成的自

由基碎片反应形成轻焦质焦油，轻质焦油、轻油和酚

油的质量分数最高分别可达 77.0%、75.0% 和 55.6%。

金属改性催化剂虽可有效活化富氢小分子供氢，但存

在对挥发物裂解能力过强，裂解速率与供氢速率不能

有效匹配的问题。通过设计多级孔和金属有效匹配

耦合的炭基催化剂在一定程度上可解决此问题 (图 11)，
过渡金属 (Fe和 Ni)及其氧化物尤其是零价过渡金属

将挥发物中富氢小分子化合物活化为H·、OH·、CHx·

和 C2Hx·自由基，而多级孔促进挥发物裂解碎片尤其

是大分子化合物裂解碎片的扩散与传质，提高了富氢

自由基与裂解碎片的结合机率，对苯，萘，联苯和蒽表

现出较好的选择性[8]。SUN等[78]同样证明催化剂多

级孔和金属活性位点的组合效应可实现挥发物裂解

速率和供氢速率的有效匹配耦合，改善焦油品质。

通过催化剂内部活化富氢小分子气体供氢有利

于提高轻质焦油产率，但由于内部氢供体数量有限和

裂解速率与供氢速率的匹配不足问题导致焦油产率

不易提高。因此，在催化剂的作用下，引入外部固体

或气体氢供体可解决上述问题并提高焦油和轻质焦

油产率。与煤相比，生物质 H/C的摩尔比更高，生物

质热解释放的 H·和 OH·富氢自由基可稳定煤热解

挥发物中的自由基碎片，促进焦油和轻质焦油的生

成[79-80]。以铁矿石为催化剂，玉米秸秆和煤共热解表

现出积极的协同作用，焦油产率高于计算值[81]。HZ-

 

10 μm 10 μm

( a ) 改性前 ( b ) 改性后

图 8    水蒸气改性前后炭基催化剂形貌 SEM图[67]

Fig.8    SEM images of carbon-based catalyst before and after

steam modification[67]

 

Biochar

KOH

KOH Free radicals

OH−
OH−

Vacancy
Biomass

Hemicellulose

Cellulose Lignin

图 9    KOH对炭基催化剂的化学活化机理[69]
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SM-5及 Ga和 Mo改性的 HZSM-5作用下，含氢量高

的塑料制品在煤热解过程中也可作为供氢体，促进焦

油中轻芳烃的形成[82]。废轮胎热解挥发物中的富氢

自由基可在一定程度上抑制煤热解挥发物的交联和

缩聚反应，提高焦油产率和焦油质量，降低焦油的平

均分子量[83]。除固体氢供体外，气体氢供合体对增加

焦油和轻质焦油的产率作用显著。H2O(g)气氛下，

Ni/Al2O3 可将水蒸气活化为的 H·和 OH·对热解挥

发物供氢，增加焦油和轻质焦油的产率，焦油的平均

分子量可从 353  amu减少到 253  amu[84]。热解气、

CO/H2、CO2/H2 和 CO2/CH4 气氛下，Ni/MgO可活化

这些小分子气体并促进小分子气体之间的重整供氢，

从而促进焦油产率的提高 [85]。 CH4/H2 气氛下 ，

Mo/HZSM-5可活化 CH4 为 H·和 CHx·供氢，CH4

气氛下焦油收率为 21.5%(daf)，明显高于 N2 气氛下

的 14.6% 和 H2 气氛下的 15.3%。CH4 和 H2O(g)气氛

下，Ni/AC不仅可催化重质焦油裂解，还可催化 CH4

和 H2O重整产生小分子自由基，并稳定焦油裂解产生

的自由基，避免焦油过度裂解，显著提高焦油和轻质

焦油产率，另外利用 D2D6 或 D2O作为同位素示踪剂
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验证了此过程 [73]。CH4 和 CO2 气氛下，Ni/Al2O3 和

Ni/AC可促进 CH4 和 CO2 重整产生 H·和 CHx·供

氢，提高焦油和轻质焦油产率，降低焦油的平均分子量

(从 279 amu降低到 160 amu)[86-87]。相比 N2 气氛，模

拟热解气 (H2、CH4、CO和 CO2)气氛下，Ni-Mo/HZ-
SM-5催化剂可使轻质焦油质量分数提 15.6%[88]。 

3　催化剂表面积炭行为及积炭的有效抑制

焦油提质是一个复杂的物理化学过程，涉及扩散、

吸附、脱附、催化反应等一系列步骤，催化反应主要为

非均相过程，几乎全部发生在催化剂的界面、表面和

催化剂的内部结构中[89]。非均相催化中积炭的形成

是不可避免的，积炭主要沉积在催化剂载体外表面、

金属颗粒表面和金属−载体界面上 (图 12、13)，积炭

易堵塞催化剂的孔结构尤其是微孔结构并覆盖表面

的活性位点造成催化剂失活[9, 53, 75]。积炭主要分为无

定形炭和石墨炭，通常石墨化程度低的无定形炭在焦

油的催化提质过程中较为常见，石墨炭呈高度石墨化，

通常以炭纳米纤维、炭纳米管或炭网络存在[90-91]。积

炭主要是位于孔隙中和外表面的 2种具有芳香性和

脂肪性炭质物质[9]。外表面的积炭为沸点低于 200 ℃
的饱和脂肪烃，孔隙中沉积的焦炭主要为沸点范围为

350～650 ℃ 大分子结构的芳香烃[92]。通过催化剂积

炭的燃烧特性分析可对积炭进行分类，420 ℃ 以下

可以消耗的炭归属为活性炭，430～460 ℃ 消耗的

炭归属为中性碳，470 ℃ 以上消耗的炭峰归属为惰

性碳，惰性炭是高度芳香和石墨化的炭聚合物[93]。另

有研究将热重分析 250～ 450、 450～ 600和 600～
750 ℃ 的失重峰分别对应归为“软炭”、“硬炭”和

 “石墨”[94]。催化剂表面的积炭行为复杂，积炭形成与

挥发物组成密切相关，脂肪烃、含氧化合物和多环芳

烃在催化剂的作用下转化成轻质芳烃的同时也极易

转化为积炭[30, 33]。催化剂类型不同，催化剂表面的积

炭行为也不相同。催化剂特性 (载体类型、酸碱特性、

金属的存在及其分散程度和孔结构等)决定积炭的化

学组成、性质和其在催化剂表面的位置[75, 95]。分子筛

和活性炭等典型的微孔材料催化剂，平均孔径较小，

严重限制了反应物和产物在通道中的传质，挥发物易

缩聚形成积炭堵塞狭窄的孔隙，催化剂的外表面主要

以脂肪烃和含氧化合物积炭为主，孔结构尤其是微孔

内主要以石墨化程度较高的芳香炭为主[9, 36, 54]。酸性

金属氧化物 (γ-Al2O3 等)、分子筛 (ZSM-5等)等固体

酸催化剂的酸性位点会加剧挥发物的芳构化和缩聚

反应，积炭首先在强 Brønsted酸性位点和外表面酸性

位点上生成，随着反应进行酸性位点减少，积炭生成

速率减慢[29, 65, 96-97]。固体酸催化剂上的积炭量相对较

大，且以无定型炭和石墨炭为主[9]。固体酸催化剂促

进挥发物裂解反应形成积炭，而固体碱催化剂 CaO、

MgO及碱性炭基催化剂等易促进挥发物脱氧反应

(C=O、C—O和—COOH)，抑制大分子含氧的交联反

应，抑制积炭形成，降低积炭量[74, 98]。此外，AAEMs
和过渡金属 (Co、Mo和 Ni等)等组分会增加催化剂

对挥发物的催化活性，但在一定程度上也会促进积炭

形成并沉积在金属表面，金属表面积炭主要以无定形炭

组成的包封积炭和由碳纳米棒或纳米管组成的丝

状积炭为主，金属的存在会减少积炭中的含氧化合

物[30, 53, 75, 90]。
 
 

( a ) 实验前 ( b ) 实验后

200 μm 200 μm

图 12    实验前后炭基催化剂的 SEM图[53]

Fig.12    SEM images of carbon-based catalyst before and after

the experiment[53]
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图 13    催化剂表面的积炭分布[75]

Fig.13    Distribution of coke on the surface of catalyst[75]
 

焦油催化提质过程中催化剂的积炭失活问题难

以避免，通过调控催化剂的物理化学性质和挥发物的

组成来抑制积炭是解决该问题的关键。多级孔或介

孔催化剂的构筑有助于提质焦油并抑制积炭，微孔有

助于提高催化剂的吸附性能，而介孔可有效降低挥发

物的扩散阻力，增强大分子芳香烃化合物的传质，提

高活性位点的可及性，促进多环芳香烃的裂解，提高

催化剂的使用寿命[36, 50, 99-101]。已有研究证明用于焦

油催化提质的多级孔炭材料和由炭骨架网络构成的

三维多孔炭材料的表面炭产率明显低于微孔活性

炭[8, 54]。此外，在多级孔和金属活性位点的协同作用
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下，挥发物的裂解速率和小分子的活化供氢速率相对

平衡，因此催化剂表面的积炭可得到有效抑制[8]。

通过调变催化剂的酸/碱性同样可提质焦油并抑

制积炭。双金属或多金属改性催化剂有助于调变催

化剂酸性抑制积炭。Ni-Ce双金属改性半焦具有更

多 Lewis酸性位点，在 Ni改性半焦中引入 Ce有利于

镍的分散，提高了催化剂抗积炭性能[45]。Ni-Ce双金

属改性的 Y形分子筛中 Ce物种的添加促使催化剂

Brønsted/Lewis酸性位比例适宜，从而有效抑制积炭[101]。

M-Co(M=Mo、 Ni)[102]和 Ga-Sn改 性 的 HZSM-5[103]

在挥发物的催化提质过程中增加了 Lewis酸性位点

的数量，可有效抑制积炭，Ga-Sn改性的 HZSM-5在 3
次循环实验后，BTEXN的产率扔保持在 22.0 mg/g以

上 [103]。YANG等 [104]通过调节镁铝水滑石 (MgxAl-
LDHs)中 Mg/Al的比例，合成了一系列酸碱性质可调

的镁铝复合氧化物催化剂 (MgxAl-LDOs)，用于煤热解

挥发物提质的结果表明，酸碱双功能的 MgxAl-LDOs
既促进了重质焦油的裂解 (酸性位点)，又提高了催化

剂的抗积炭性能 (碱性位点)。碱金属 Ca掺入制备的

HZSM-5，降低了酸性位点的数量，抑制了积炭的生

成[105]。碱性 CaO和酸性 HZSM-5耦合可抑制积炭，

挥发物在 CaO上的预裂解和预脱氧作用降低了 HZ-
SM-5分子筛酸性位点上大分子缩聚反应的可能性，

从而降低了分子筛的积炭[106]。由此可见，酸碱双功能

催化剂的开发可能是提高焦油质量、抑制积炭的有效

策略。

通过调控催化剂的物理化学性质可有效抑制积

炭，但煤热解体系是个富炭缺氢的过程，挥发物中的

自由基碎片在没有氢自由基稳定的情况下仍可转化

为积炭[107]。因此，在催化剂作用的基础上，通过 H2O、

CH4、C2H6 和 CH3OH等富氢小分子调控挥发物的组

成可有效抑制积炭。在 Ce、Zr和 Al改性的 Fe2O3
[108]、

Ni-Ce/Al2O3
[109]、Ce–Mn/Fe2O3

[110]和 Ni/Al2O3
[84]作用

下引入水蒸气，水蒸气可分解为 H·和 OH·稳定挥

发物裂解碎片中的自由基，减小焦油的平均分子量有

并有效抑制积炭。CH3OH在 ZSM-5分子筛[96]和改性

高岭石[111]作用下可分解为 H·和 CH3·，减少多环芳

烃的生成，抑制积炭。此外，Ni/AC能有效活化 C2H6

和 H2O，生成的 H·和 CHx·与焦油裂解产生的自由

基结合，产生抑制积炭的作用[73]。 

4　结　　语

(1)金属、金属氧化物、天然矿物质、分子筛和炭

基催化剂可促进煤及热解挥发物中 C—C、C—H、

C=C、—OH、C=O、C—O和—COOH等化学键的

断裂及稳定，有效催化裂解沥青等重质焦油，增加

BTEXN和 PCX等高附加值轻质焦油的产率。各类

催化剂的物理化学性质不同，其对化学键的断裂能力

及焦油的提质效果不同。相比其他催化剂，分子筛和

炭基催化剂更易通过改变物理化学性质调变其催化

性能。然而，焦油、轻质焦油产率低及催化剂积炭失

活是焦油催化提质过程中亟需解决的关键问题。

(2)利用金属尤其是过渡金属改性催化剂活化热

解体系中的内部小分子氢供体和外部固体/气体氢供

体对重质组分裂解碎片原位供氢可实现焦油产率的

提高及焦油品质的改善，有望解决催化过程中存在的

焦油产率低及提质效果差的问题。

(3)焦油催化提质过程中催化剂的积炭失活问题

难以避免，从催化剂本身设计及热解反应体系出发，

通过多级孔与金属活性位点的组合效应促进挥发物

的传质及提高活性位点的可及性；双金属改性催化剂

调整强酸和弱酸性位点的比例；酸碱双功能催化剂的

开发；H2O、CH4、C2H6 和 CH3OH等富氢小分子调控

挥发物组成，有望抑制催化剂表面积炭的生成，延长

催化剂的使用寿命，实现热解系统的长周期稳定运行。
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