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Abstract: The low-rank coal pyrolysis technology with tar upgrading by catalyst is a clean and efficient coal conversion
technology that ensures national energy security while also meeting the “carbon peaking and carbon neutrality” goals. The
catalytic effects of metals, metal oxides, natural minerals, zeolites, and carbon-based catalysts on coal and pyrolysis volat-

iles are discussed due to the complexity in controlling tar quality and coke behavior. It also evaluates the effects of each
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type of catalysts on the distribution and composition of pyrolysis products, comparing their advantages and disadvantages.
The differences in the physical and chemical properties of various catalysts, as well as their relationship with catalytic per-
formance, are explored in detail, and the action mechanism of various catalysts is revealed by combining the bond break-
ing behavior of C—C, C—H, C=C, —OH, C=0, C—0 and —COOH in coal and pyrolysis volatiles. Based on the stud-
ies above, aiming at the problems with low-tar yield and poor-tar quality during the catalytic process, it is proposed to use
internal small molecule hydrogen donors and external solid/gaseous hydrogen donors activated by metal, particularly the
transition metal modified catalysts, for in-situ hydrogen supply to heavy components cracking fragments in order to in-
crease tar yield and improve tar quality during the catalytic process. Furthermore, to solve the problem of catalyst deactiv-
ation caused by coke, the chemical and physical characteristics and composition of coke, as well as the causes of coke
formation, are examined in depth. Several effective strategies to coke inhibition are proposed, commencing with the design
of the catalysts and the pyrolysis reaction system. Combining metal active sites with multi-level pores, bimetallic modific-
ation to control the ratio of Lewis and Brensted acid sites, the synthesis of dual-functional catalysts with basic and acidic
properties, and the introduction of hydrogen-rich small molecules such as H,0, CH,, C,H,;, and CH;OH to control volat-
iles composition all contribute to effective coke suppression methods. The study can serve as a theoretical basis for the ad-
vancement of catalytic pyrolysis technology for low rank coal.

Key words: low rank coal; pyrolysis; volatiles; catalytic cracking; tar upgrading
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Table 1 Catalytic effects of metal oxides on coal and pyrolytic volatiles
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Table 2 Catalytic effects of zeolites on coal and pyrolytic volatiles
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Table 3 Catalytic effects of carbon-based catalysts on coal and pyrolytic volatiles
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