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Abstract: The primary challenge encountered by unmanned technology during the unloading phase in open-pit mines is
safety hazards, particularly concerning the stability and normative detection of engineering structures at the edges of un-
loading area. To tackle this issue, a point cloud model analysis algorithm, driven by parallel perception theory and named
AC-VIT, is proposed for the real-time and stable detection of the stability and normativity of engineering structures at the
edges of open-pit coal mine unloading areas. Initially, three-dimensional point cloud data are captured using unmanned

dump trucks equipped with rearward LiDAR scanning. These data are then processed through grid averaging methods,
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statistical filtering, and mapping to discrete grid models. Preliminary terrain marking is conducted via height field gradi-
ent feature extraction, in conjunction with the improved AC-VIT neural network for normative recognition and classifica-
tion. The AC-VIT model, leveraging parallel computation solely based on a self-attention mechanism and multi-level at-
tention mechanisms, effectively captures long-distance dependencies. Furthermore, a parallel simulation environment for
the unloading area is established based on the actual production environment of the Haerwusu open-pit coal mine in Inner
Mongolia, within a simulated artificial scene environment, to gather a vast array of diverse artificial scene data. Utilizing
this data, in conjunction with actual scene data, the algorithm undergoes a parallel execution to design and perform paral-
lel perception computing experiments, facilitating the effective training of the detection algorithm and scientific evalu-
ation. Experimental outcomes demonstrate that the AC-VIT algorithm, underpinned by parallel perception theory, attains
an accuracy rate of 98%, surpassing the accuracy and efficiency of traditional neural network models. The successful de-
ployment of the AC-VIT algorithm not only elevates the intelligence level in open-pit mine unloading operations, but also
furnishes robust technical support for the safety detection of other analogous engineering structures. The algorithm intro-
duced herein presents a more efficient, safe, and intelligent approach for the detection of engineering structures at unload-

ing area edges, bearing significant relevance for achieving high-performance, high-reliability, and high-automation in open-

pit mine operations.
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Fig.9 Testing the experimental platform
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Fig.11 First operating condition
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Table 6 Model comparison experiment
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