55 49 45 7 W P2 R 2 Eird Vol.49 No.7
202445 7 H JOURNAL OF CHINA COAL SOCIETY July 2024

4

AEME R ENEA R TATRE S B R TR

CWE, RS, KA, KR

(PET LR 5l TRE#BE, T 40 221116)

O E AR —FBERRLGBLE LA RKEENKE, BRI KT B RMBAESKE
TR EFaRFRIA KA E B, EITABET 2 6K HFHR KM A AREK LT R R S B
MRE RN e s, ZARAEAIMEA BT AEF ik, ELTRARAEFT A TERRA
REE B B RBPNE, BT ETBEMERATEERERBRIE, RETEAGEAWRAE., ARy
Bk B RS ARBR R EEIRARG L A BEHE k, AW T AR MR A, FEEEZRBELEHT
BRWMBELY RAH BRI, 2240w T.: EHHOERNTE oKL EIKRENER
FEGAR G R BRE K 2 AN By B B REMAR B A H A K AL AL IR K (0°~15°) 5 ik g
X (15°~30°) Fm ) (30°~45°) A H, (a4 R TA4s1h; B LiREFemB A ZEABAMX LR,
KAl i@ Ao B R A% IE G, 2 MPa B R T 38 B ik 22 LB R 1945, WERXNERAESR,; 4
FmB AR B BRI AR, B p N WSS e BT, R4 AER T AR
FFRABET IS WEFERBET EMET AR ET B LA m . 34 8 A BAEE &
MIBEA NEAE; BEFE AT A TRELS G A BAZ R 2064, MAME A aE
X, BHELESEBR (KBS RER) HRENET; B6RAMSERZGRMIEIN, Bkt Ff
MmBERERAMKLX R, BAFEMEERMEMEA GG R M, BREYEESEREZHGIEX
MA@ IERWMET; B ARKN, BERLEL BRSNS GRERSE R AER BT,
KPR : B BRAK TR A8 A 5 RN ARG 2 Ay BUE; A GLAF AE
FESEES . TD325 XEFEEE:A  XEHS:0253-9993(2024)07-3090—12

Rock strength and permeability under compression-shear coupling corresponding
to different loading angles

FAN Gangwei, FAN Zhanglei, ZHANG Dongsheng, ZHANG Shizhong

(School of Mines, China University of Mining & Technology, Xuzhou 221116, China)

Abstract: The Ordovician limestone aquifer is widely developed in the basement of the Carboniferous Permian coal bear-
ing strata in North China. Coal mining is threatened by both water inrush disasters and water resource loss from the floor
confined aquifer. The hydraulic characteristics of the rock under compression and shear coupling action are the basis for
evaluating the water resistance performance of the mining floor strata on high inclined confined aquifer. Using theoretical

analysis and discrete element numerical calculation methods, the rock instability criterion for the Mohr circle rotation un-
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der different compression and shear ratios was established, the mechanism of rock strength attenuation under compression
and shear coupling action was revealed, the stress threshold determination method for comprehensive indicators such as
crack angle, crack propagation speed, and improved volume strain was proposed, and the characteristics of rock micro-
crack propagation and permeability evolution under different loading angles, osmotic pressure differences, and confining
pressure were clarified. The main conclusions are as follows. The reduction of rock bearing capacity under compression
and shear coupling action is manifested in strength reduction and elastic modulus increase. The elastic modulus of rocks
shows a trend of first slowly increasing (0°—15°), then rapidly increasing (15°—30°), and then decreasing (30°—45°) with
the increase of loading angle, but is still greater than its initial value. There is a linear negative correlation between rock
strength and loading angle, and the reduction amplitude is proportional to confining pressure. The rate of strength reduc-
tion under 2 MPa confining pressure is 1.9 times that without confining pressure, controlled by the equivalent internal fric-
tion angle. As the loading angle increases, the degree of rock failure decreases and the post peak stress drop transitions
from brittle to plasticity. Under compression and shear coupling action, the induced initiation of tensile cracks and the
dominant unstable propagation of tensile and shear composite cracks explain the inherent mechanism of nonlinear evolu-
tion of initiation stress and damage stress thresholds under different compression and shear ratios. The position of per-
meability rebound is between the threshold of initiation and damage stress, and as the loading angle increases, the distribu-
tion of tensile and shear composite cracks (dominant seepage paths) is more concentrated. The rock strength decreases
with the increase of osmotic pressure difference, and the rate of decrease is negatively correlated with the loading angle.
The peak permeability of rocks decreases with the increase of loading angle, and the decreasing trend changes from linear
to nonlinear with the increase of osmotic pressure difference. When the loading angle is large, the control effect of osmot-

ic pressure difference and confining pressure on rock strength and permeability weakens.
Key words: permeability; water conservation mining; loading angle; compression shear coupling; stress threshold;
fracture characteristic
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Fig.2 Generalized mohr circle and coordinate transformation
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Table 1 Numerical calculation scheme
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Table 2 Numerical calculation scheme
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Fig.7 Stress-strain curves and crack evolution at different loading angles
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