55 49 45 5 P2 R 2 Eird Vol.49 No.5
20244 5 H JOURNAL OF CHINA COAL SOCIETY May 2024

SB/R ST M T X RN AR B SRR E R LK 5TAR

% #F L4 WL BEAN EPE, ERLET, ML T O#

(1. R R SAEBRIHEA AL 65T 100015; 2. EAIIRSE dba) AR IES TR EE GG R, Jb 102249; 3. fEFLEE T REBETT /0%,
WITT  78712)

W OB ARREMANARGA TR ER ARG TR T, FIZH R IR B S
FEMSEERRGERES LA ETLENL, 22, O TREEMAREL L, BASRES. T3
B, MREE. R, B/ RAFFRS, FRIA TR EERBERREAT A
ERTRBEE, LT HBEL ZABAL TIRENK. A TR R Ha3E 5o 38 = 5
BHAR, ARSI EHAT TR AR T R, ARBEERXIABRBRESL A T LR, BL “BR
HRAEY R+ A A FAE R TEE, B VR S REEEWEFILRRF ERARI LS
R L (B AR B KA R AR A W) KB 5 R A+ B R IR L R N+ S kR
S XN AR HERBELRBAR, FIIANRF-TE-FE—REE STk, B EEL-F4
WE RIS, Fram A B T Ak ERAR (SRV) Ao R AR AR (DRV), TRA T REEZA
R FR ST RAT R4 2 EUR, )5, BE% A FRRFBEEEL R, T ZF
FAEHYE, RAMAARILE TSN T HmRIREA TR IR E, ERERELN: KA
ERXMBERELARR, CRAGA/RGFRGHE FATRE 1x10'm’, KFHRHE AT
At 2x10° m’, HHEMETERRI . FABHER; FBHRMEASMA AL EWEL YA E
H: MESAE. MEREAMEIRE, RRFAZTHEILYMAEN: MESA T, WMARE
Fo BBV F

KR AV X S IR A AR, S - TR A — R R £ E &

FESES: P618.11 XEMFREM:A  XEHS:0253-9993(2024)05-2376—18

Practice and understanding of deep coalbed methane massive hydraulic fracturing in
Shenfu Block, Ordos Basin

AN Qi', YANG Fan', YANG Ruiyue’, HUANG Zhongwei’, LI Gensheng’, GONG Yanjin’, YU Wei’

(1. China United Coalbed Methane Corporation Ltd., Beijing 100015, China; 2. National Key Laboratory of Petroleum Resources and Engineering, China
University of Petroleum(Beijing), Beijing 102249, China; 3. The University of Texas at Austin, Austin TX 78712, USA)

Abstract: The proven geological reserves of the Shenfu deep coalbed methane (CBM) field on the eastern margin of the
Ordos Basin exceed 100 billion cubic meters. It is of great significance to realizing the efficient development of deep CBM
in this region to ensure the national energy supply. However, the complexity of the geological environment which in-

cludes high stress, medium-high temperatures, low permeability, strong heterogeneity, and wide developed cleats and nat-
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ural fractures, makes it challenging for the existed shallow and medium CBM fracturing techniques to be fully applicable
to deep CBM resources. As a result, the stimulation scale and parameters for deep coalbed fracturing are still in the trial-
and-error stage. In order to explore the stimulation techniques which are compatible with the geological conditions of deep
coalbeds, the Shenfu block in the Ordos Basin was taken as the geological background and the large-scale hydraulic frac-
turing of deep coal seams was conducted as an engineering practice. The authors designed the idea of “Push the limit to the
beyond + balanced propagation + effective support”, and proposed the massive hydraulic fracturing techniques based on
“multi-stage multi-clusters with moderate-dense cutting + perforation with equal apertures, deep penetration and limited
flow + integrated variable viscosity (rock breaking by higher viscous slick water + complex fracture network generating by
lower viscous slick water) + high pumping rate with high proppant concentration + pre-acid treatment to reduce the break-
down pressure + graded proppants with multiple sizes to support fractures”. Then, the authors put forward an integrated
“Geology-Engineering-Al” workflow to perform post-frac analysis, through double matching and correcting the fracturing
pumping pressure and production rate automatically, accurately characterized the stimulated reservoir volume (SRV) and
drained rock volume (DRV), and predicted the estimated ultimate recovery (EUR) under different fracturing scales and
well types. Finally, by statistically analyzing the gas production characteristics of multiple wells in the Shenfu block and
utilizing the random forest method, the primary controlling factors affecting the production capacity of deep CBM were
quantitatively analyzed. The results demonstrate that after reservoir stimulation, directional wells can achieve a maximum
daily gas production rate exceeding 10 000 m’/d, while horizontal wells can achieve a maximum daily gas production rate
exceeding 20 000 m’/d. It indicates that the deep coal beds have good fracturing properties and great development poten-
tial. The primary impact factors for peak gas production rate are gas content, coalbed thickness and proppant concentra-
tion, while the major impact factors for cumulative gas production include gas content, proppant concentration, and total

volume of proppants.
Key words: Shenfu block; deep coalbed methane; massive hydraulic fracturing; geology-engineering-Al integration;
production impact factors
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Table 2 Mechanical properties of coalbed, roof and floor
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Table 3 Fracturing parameters for 3 deep CBM wells
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Fig.1 Fracturing pumping curves
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AR (HESR M2 . 77800 55, JT AR I - 28 56
N SR o B A (A SRV S5 SRS 2t Ml o ) AR

(2) S4EY AL . W LT 2R B A B 5%
PR, AT R AR Y RISk AL AR 2
2] XGBoost Fk v AR, AR Y5 St Tt
2, IR A G, BOE AL A SHL .

(3) A3 LA S ae i . i A =R
SLLERAY (EDFM) B 2445 B 8% 15 T e B (A
PAEFG, B ISR . 398 SOKPIA SRR
SNPLEL, JE T AR S Re TR, IR M &
P25 — T JRBLERBE SRR R % (NN-MCMC) 523 A 3 1
BRLG, RS . MAESFRIESAL, IR - e
HERZARAf R (EUR),

X 3 H = foh 22 W a8 2
o B4 Tk B 2 R B sh G TAE R X 2488
SMBEESHATH | KOE, SRt A 740 H
S RE TAERMAATE 2 IISIE . R RERE
BREIS BE A% OS2 38 5 AR AT 42 Ry iR 25 /ML, B
245 B AH N Y B AR 0 A 0K 1 2488 JLATE AR
SRR G IR, GeA SRS 45 R iy T 5EdE
IR, A SCHE Y R S 7 RE VS TAE R CAE) N B R )2
USRI 2 HE 25 51 5 1R, e ik
P 1 BB Rt 2 AR S U Y MER M, JF A T AT 5
FaE Frl s Ak 5 PEA .

2.1 HEY RER

AR SCHENT W R LR Y R A B AL R I B AN
¥ 4% 7% (Displacement Discontinuity Method, DDM),
W 1 5T ) A R G A B RS SRR A R BT RAS
ML . DDM ARy —Fplal 40 Foc i ik, wI L
% B AEEY R S AL, & TR S A S
ST A8 3L [T R TR A8, i)™ 32 I TR ) e 234 54
2y . 5HRIuikA, DDM HA R, b
ARG, 48RRI LA . DDM 5 AU A]
DATHIE AN = 2 5448 0 A6 A6 AN 14 S TRVRNZS S0 7, T
EURTDAYER | AR i 224~ — 4R 2448 A0 TR T Y 1)
A, SAEEY AR R R AR SLAE R o T RE T 1Y
BEVESLT, 5T RENSHAW 45001 wul* =gt 57 fry 24
B AT SCUEIN B 28 R AR ZLEE T I T /K ) a8 e
3, IR L Ak 01 R I sm B B RS E 5
KIRBEAA R S5 /K T BABE AR T 1) . A5 RIRZL4E
— A (B 7K 7 RS BT B — M) B F R ) KT
A T A A BThIR B, 7K ) 244804 2 1k IR A LETT:
URZ Y s 7 VE A R AR ALEE 1 1 B N 7 5 1E 1 71k
SRR BRI E R, K T ARG Bl IR B AT I e
2 RARHEED . WIRE R E I HI R G5 7K T 2

RETEY AL R mT 5 Hh BV LSS 1A A [ L A T
B, T8 1R 7K T 24 5% 5 50 B 55 1 4 A B 48 I, TR I
DDM J5 2K 1 448 1 J (A LA R A8
Rt BEZ i E | S4B A AR A% o B il 4k
WLEARE IR A o SR AL 2 ) S ORI
(eXtreme Gradient Boosting, fiij X XGBoost) #H v Z44%
P RAREALAR, I 5 S PR T 3 R I T LA
W IE S8 A5 . XGBoost J&— i LA 8] 544 Ay JE A
T, T I B AR — P il > B,
TR 2 A DR 4L AR, AR SRAR B G T A — AR
PR 22, DAR T S T R 10 A0 4352, 08 R A6 18 5%
FR B — BB 0 DL SRR 37 Ty R Dl A RS U )1 2 1
2%, o 38 A SRR 21 B 4R A R e T e 2 25 AR
R T RIS s B AR AL ARG B, 7EAG IE 2 FE 2
A R B REE -SRI (Markov chain Monte Carlo,
MCMC) Kk, LR TR 2R A 3h LS, e
HSE (AR AL FRRH R B, M SK
PAAEIE 2 A LR . MCMC J7 8 R B i
FEGIABNZERERIBAL S ILRhAE S0 A1 Bl A 0L ) i3t
A7 MR 1 B AU, TR TSRS R R IE B H
REF AL LB

EEASUA TERMZEE RS O IERY
JE 245t TR, TE BT A e 4555 12/ B i A B 22,
IR A s A T 28 5 A T 2l S AU 2 s
@ B S, B SRR B S8 T AR
BRI 1R, R TR S SR R B G, I
LT AL R A (LHS) 5 kAR i N AT FEAR
@ TE BUIREAAE i AR B R TR BTHL 28 P
PIZE MR ; B XGBoost FEAIVE Ry S48 B AL
PR, F P2 NS A A A © R
MCMC KA ARBEAEIRYFNR 22 X bR H bR sR % (A
TriR22), BT — AR M ANFEAS, S {2 ae
RIS S TAER AV 2 s @ EE %R,
LR AR Al 5 B e KAk AR B

H i DDM Jr ikl 445 ™ e i i Pk S5 18
TSI Z AR, o T it — B A R AR A X
OGRS 22 SN FH R E R 1 5 T SRk, SR I %
JRF A At RARE S22 7K ST 22 9% e S8 A it 722 WA ) 485
5208 RBUERPLEE RAEXT . (B 2). %I B brfi
N8 SHE, MEEE 5.9 m, &5 18 mi, iR
1 995 m, J-¥ 3 208 m, ZK-FB: 1 000 m, 343 8 Bt
31, SR IR RS R R A, S it T
HefE 18 m’/min, BAbE 2 136.4 m®, BORH 16 533 m’,
JEZERCR IR AR B R IR R, BB RN 15%
W R Eh R, SRR A 70/140 H +40/70 H +30/50
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Fig.2 Microseismic events and simulation results of a deep

CBM horizontal well multistage hydraulic fracturing of
Linxin—Shenfu gas field

AR RIS RO E IR 5, FE T I2Bnil 4
Y, S BCEA FA R RIS HR ) | SRS
TAFA LA S BERIE M Z S50 | RS IR A b o
FFAE, N7 AR AR S TP Y Y

JE SRR S PRl TR AEAT BB . Tk
Z R NI RS IR A AR, MELLEL
TR E R IR AR R A O, DR R R AILAE A 7
A MRARREE . KIRBEERYE ], SIRAE ) 580
LA P B B o AR SCRE R R AR R 2

R4 NETRENZERSHEENSERX
Table 4 Comparisons of fracture propagation simulation

results and microseismic monitoring results

B PR K /m PR K /m RE/%
1 233 248 6.0
2 203 211 3.9
3 204 201 13
4 245 265 7.7
5 339 315 7.7
6 268 263 L9
7 217 237 8.4
8 282 292 33

RS5 NETREISHIZE

Table 5 Input parameters for fracture propagation model

i AH: BH: HIH:
B RS /(m>m) 1 000x1 000 1.000x1 500
HIZSE A2 PR /m 2117.0  1953.0 2019.8
iR C 52 46 50
LR /m 6 4 1
- LA 96 64 10~20/4%
B /m? 18927 24526 23679.2
BRb/m? 176.8 21838 35024

B A R T A SRR AR R R Dy e LA AR AN
Wik A, PRI B o . RARZILE 28 1 2% [N
FEMEARAE F I A2 v R BB B, 0B 16 i H bR DX He
J ke 3 Dy S e o R P E R A 2 4 TR LY
S BB T B A R, T E ESE AT TR OOK
IV 375 18], 3% SRR A, S AP R A 5 o) P v )
FRALHT, & B 7EAR S0 T HIHL 2 8], e 22, dE
B . AT AFIE B, 4 0 A R B T LR &
ROE KB, 2 8 305 3 RORE BB A T3 80CR,, 1
K e JEE A R ) ) R DA S R AE . T Lk
FRAE, TR A BB RCR 5 7 s SIS 7
K, AL B AR DX 5 PR 3 o 15 EROAL A X 2 A TR B A
PBE 2 REE K ARZ4% 2 400 45, H H AR X I %
B4 N RIRZEE 1000 45, T U2 b &
BRI SR, KIRMESHOLE 6.

R6 RAREEMSYIRE

Table 6 Basic parameters for natural fracture

28 HfE
IR B 2
FRIRDLBEMFA/(°) 90
KIRHEERKE/m 50~150
RIRBBE TR /m 0.01
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Fig.3 Pumping pressure fitting process
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Table 7 Calibration of uncertain parameters for fracture

propagation simulations

AR AL B EERIME

BHFLEC B/mm RE (MPa-km)
ARG 1~96 5~15 04~1.0 5~20
A KOIEZER 86.0 6.1 0.50 11.09
FAEVE 1~64 5~15 04~1.0 5~20
5 REIEZE R 55.0 5.8 0.41 11.02
KR 1~16 5~16 04~1.0 5~20
KIEFRCFE) 640 1050 0.80 18.70

e 32 EE IR RS W0 1 RAR RAE R Z AL,
SERTTA, FERBON K ) 288 Y RIE A 250
WG TR 2RI R, EARAE | RAEIRBIRIAE N {4
FRIS L B 5 b T d, LA AL A HE K, s
MRAMEEN Z . A2 BIFAJF AW ETHS
29.6%. MANWS P 23.8%, LAEAE K . AR .

FEIR L
i
| Rt i

HIF FEARALIE

L
\i%
)i s Erz"ﬁ y

F LT | A R K 4% AR L 4 i 4R T 13.0%,
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H/NTF AL B, NI A K455 AL B H/N.
A&, H R 28 A BUZ AL B 239, 17.6 15,
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FH L, 7K 25 D) AR e 24 mT 25 4 o 2 1 2 R
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Fig.4 Fracture-network morphologies after calibrating by pumping pressure
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Fig.5 Main fracture morphologies after calibrating by pumping pressure
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Fig.6  Simulation results of fracture parameters
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Fig.7 Statistical results of fracture length and fracture height in Well H

PRSI S, I XA FRAR YA T YI 25, (A HLIE 1T IR
Bde/IME; @ R FFEFACHA Y ) MCMC 3514,
L4 JRyiR 2550 H AR 3R A5 Dy s 00 G ik i 45 O 2047 50
TUE, BERHLZE A A N it A i — 25 U 2 A R AR 7Y
& BT SR GG TT, BB B8 R Rk
FROVE, R TAEG , NN AR AR R 1 5 £ 00 Y
AFAR s BB R A SR I 2 S, LR e = L 12
TP B35 . LHS J5 3k 0T LISt 24 S50 e =5
(AT R 53, TE 1 e 4E S HCR AR 25 ], S AR B AL 4]
HRIFRIAFEA . FETRBEBIR ) MCMC 557
T T BB B ]

A B, HH¥LLH A A A, il 3w H R
TUHAH P2 K AR 25 bR, LA4 RiiR 22 /N R
H bR R I T 1, 4 R 22 B/ IME AT

Z ij,model ijhistory % 10 OWij
1 =1 Xi j.history
J i
&= rR 1)
S
Jj=1 i=1

o, i 0 o35 R R G R S SR 5 L5 g M p
3 531 DA 30 BB 0 R0 2 B R 5 3 moger 11
Xiiistory 7T AWANEZHY j 2K 51 i ALHIRAN 247 i U RE
ASE AL T3 S s wy AR S B R i AR

2 PR X e 2L B R 0 2 R A T
s U0 BTSRRI R T
TEVES R 8, 8RBT RBOE SO XA TRk
A S e 5 T e B e 2 L, B T B e T AR R R
SEA MG RS, NI/ N T 1 K 2458w | 5%
RIE /N T 24P BN SR B 158 0 L 481K
IR 3 28 L RE /N TBURE 3 Hr A 2 B R FROK

SURE ST K ITHEGEA S REUNT 1 MPa ', KT iX
L, OIS 7= 6 4 2 MR AN B 8 R R R 3L 1 7 UM
INTIR I REET T RE 15 2R 3 R BUE/N T 0.5%
107 m’. g I 340 75 B0k 52 o b S R AE 0 T A
28, M D7 SR AU BOCR S WB 9 oR H 2 B
i, o A i 2 S 45 R AT S PR ) 2 2 MR 2R
28

A, B, H I IR AR XS DR ZE AR ES 51 N 15%

K8 THESHRITLHE

Table 8 Uncertain parameters for Al-history matching

It N /M ~ KA
BEmE T AL 0.3~0.7
DRV /em 70~120
KNS HAEF/(10 P m? - m") 50~120
A FARZLESWiRE /(10 P m? - m™") 0.1~0.6
K B4 R BUMPa ! 0.10~0.15
HIFB B0 m? 0.03~0.10
g R 0.3~0.7
DRV /em 40~120
K1 F RS0 P m? - m) 80~250
? FARZLESHiRE /(107 P m? - m™") 5~20
K B4 R BUMPa ! 0.08~0.12
HIFB B0 m? 0.03~0.20
R R 0.2~0.7
DRV /em 50~95
KNS HAEF/(10 P m® - m") 10~150
" FARZLEFHiRE /(107 P m? - m™") 0.1~10
K B A R B/kPa ! 0.25~0.70
HEFBBEHRN0 m? 0.008~0.040
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Fig.8 Representative best match of BHP, water flow rate and cumulative water production for Well A, Well B and Well H
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1 0.35x10%, 0.31x10%, 0.89x10° m* (& 9). A1
SRV. DRV Hl DRV/SRV Z [t 43 %] 238.7x10% m’,
51.3x10*m’, 0.2149., B #:(% SRV, DRV, DRV/SRV
Z Ay 51k 213.7x10* m®, 49.3x10° m®, 0.2307. H

J£% SRV, DRV, DRV/SRV Z 43511 452.6x10* m®
138.3x10% m’, 0.305 6(/ 10). Zi&*}He, H H:19 EUR
Iy 5E AL B IRy 2.54, 2.87 1%, SRV 2+ 5ilJ& A, B It
) 1.89. 2.12 f%, DRV 73 j4li& A B J11 2.70. 2.81 fi%,

K9 THESHREER

Table 9 Calibration of uncertain parameters

i A B H

Feplifi P50 SEdUW P50 Al st P50

RS T B /m 9.05 9.08 12.28 12.31 11.2 11.14

AR A /m 80.52 78.09 154.54 160.88 86.75 84.80
K144 S AE /(107 m® - m ) 58.75 56.82 174.4 166.14 88.03 92.57
IR S BEET 4 R BUMPa ! 0.12 0.13 0.11 0.12 0.29 0.30
KIRFILE FHALS/(10 " m? - m ) 0.18 0.23 11.91 12.07 8.29 8.65
HFEBBEHR/N10° m? 0.034 0.035 0.200 0.200 0.038 0.036

W PnlysrfifE(quantile), JE—GTHES,

T ¥ — R BRI NBEATRI Gy, IR BRI T L S BRI 2 e T Tl
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Fig.9 15—year EUR probabilistic prediction of Well A, Well B and Well H
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