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摘　要：天轮是提升系统中的重要组成部分，一旦其出现故障，不仅会影响煤矿的生产效率，而且

会引发安全风险。润滑不良是导致天轮故障的主要原因之一。针对目前煤矿现场普遍的人工润滑

方式导致效率低下、难以保证润滑的均匀性和及时性等问题，设计了新型天轮轴承智能润滑系统，

并实现其现场应用。从天轮结构出发，考虑天轮轴端滚动轴承和游动轮滑动轴承的不同运行方式，

提出了采用自动润滑和人工辅助相结合的方式对天轮轴承进行润滑，通过对润滑系统的实时监测

实现单泵多点不同用脂量智能配送功能，同时提供废脂回收功能避免废油对轴承的损伤。研究了

基于润滑状态异常识别的智能控制策略，根据对润滑状态的判断结果调整系统的润滑周期和润滑

量。考虑到润滑状态识别准确率对系统运行结果的影响，构建了基于局部保留投影算法 (Locality
Preserving Projections，LPP) 与支持向量数据描述 (Support Vector Data Description, SVDD) 相结合

的润滑状态智能识别模型。针对特征降维方法中近邻点数量会严重影响降维效果的问题，提出以

样本集的高低维特征集的信息熵差为目标函数，采用粒子群优化算法对 LPP 算法参数进行优化。

采用现场实测数据对该模型进行验证，结果表明所提方法可有效识别天轮轴承异常状态，现场工

况下识别准确率达 82%。最后，在某煤矿进行了天轮轴承智能润滑系统的现场应用研究，以单泵

对 4 个天轮进行润滑，结果表明润滑系统可实时获取自身的运行参数并实现远程控制，保证润滑

效果的持续性和均匀性，满足现场的实际需求。
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Abstract: The sheave is an important part of a mine hoisting system. Once it fails, it will not only affect the production ef-
ficiency of  coal  mine,  but  also cause some safety  risks.  Poor  lubrication is  one of  the  main causes  of  sheave failure.  In
view of  the  low efficiency  and  difficulty  in  ensuring  the  uniformity  and  timeliness  of  lubrication  caused  by  the  current
manual  lubrication  method  commonly  used  in  coal  mines,  this  paper  presented  a  new intelligent  lubrication  system for
sheave bearings and implemented it on-site application. First of all, starting from sheave structure and considering the dif-
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ferent operating modes of the sheave shaft end rolling bearing and the traveling wheel sliding bearing, it was proposed to
use  a  combination  of  automatic  lubrication  and  manual  assistance  to  lubricate  the  sheave  bearing.  Through  a  real-time
monitoring  of  the  lubrication  system,  it  realized  the  intelligent  distribution  function  of  single  pump and  multiple  points
with different grease amounts, and also provided the waste grease recovery function to avoid damage to bearings by waste
oil. Then, an intelligent control strategy based on the identification of abnormal lubrication status was studied, and the lub-
rication cycle and lubrication amount of the system were adjusted based on the judgment results of the lubrication status.
Subsequently, considering the impact of lubrication status identification accuracy on system operation results,  an intelli-
gent identification model of lubrication status based on the combination of Locality Preserving Projections (LPP) and Sup-
port Vector Data Description (SVDD) was constructed. In view of the problem that the number of neighboring points in
the feature dimensionality reduction method will  seriously affect  the dimensionality reduction effect,  it  was proposed to
use the information entropy difference between the high and low dimensional feature sets of the sample set as the object-
ive function, and apply the particle swarm optimization algorithm to optimize the parameters of the LPP algorithm. The
model was verified using on-site measured data. The results show that the proposed method can effectively identify the ab-
normal state of the sheave bearing,  and the identification accuracy can reach 82% under on-site working conditions.  Fi-
nally, an on-site application study of the intelligent lubrication system for pulley bearings was conducted in a coal mine. A
single pump was used to lubricate four pulleys. The results show that the lubrication system can obtain its own operating
parameters in real time and achieve remote control, ensure the continuation and uniformity of the lubrication effect, and
meet the actual requirements of the mine site.
Key words: mine hoist；head sheave bearing；lubrication system；state recognition；intelligent lubrication
 

在天轮的日常维护中，润滑是必不可少的环节。

然而，目前天轮轴承的润滑工作仍然依赖人工进行。

每次进行润滑时，工人需要攀爬到数十米高的天轮平

台进行操作。这种润滑方式增加了工人的劳动强度

和风险，且无法确保润滑效果的均匀性和持续性，同

时也造成了润滑油脂的浪费[1]。为了改善该问题，大

量学者对天轮轴承润滑系统进行了研究，以减轻工人

的负担并提高润滑效果的稳定性。聂虹[2]设计了一种

改进的天轮结构，利用滚动轴承支撑游动轮，通过轴

套进行轴向固定，从根本上解决轴瓦润滑中存在的问

题。赵光辉等[3]针对天轮轴瓦润滑的问题，同样提出

了采用滚动轴承代替轴瓦的新结构天轮装置，希望解

决由轴瓦润滑不良引起的天轮异响、轴瓦固定螺栓断

裂、偏摆超限等问题。吴楠等[4]讨论了天轮自动润滑

的可行方式，提出了离心驱动自动注油和天轮轴中心

油道自动注油的方案，指出离心注油的方式可能导致

天轮转动不平衡，且润滑效果得不到保证；从强度校

核、润滑保证角度分析了天轮轴中心油道输送润滑脂

的可行性，并设计了天轮不停车加油装置。杨芬[5]提

出了天轮轴承自动润滑系统，在天轮轴中心布置注油

孔实现轴承与轴瓦的润滑，并对中心孔和注油孔尺寸

进行优化设计。以上研究所提的天轮润滑方案需对

原来的天轮轴进行加工，但对于煤矿现场大型提升设

备，天轮设备结构改进涉及多方面内容，难以短期内

实现，因此目前天轮润滑的研究均停留在理论阶段，

与现场工人的紧急需求形成强烈矛盾。此外，实际中

设备运行工况复杂，润滑需求不断变化，准确判断轴

承润滑状态是满足现场润滑需求的基本要求。

在对润滑状态的识别研究中，张强[6]提出了数控

加工中心智能型润滑系统，通过模糊逻辑控制算法对

采集的温度数据处理，判断润滑状态，实现润滑系统

的智能控制。张峻宁等[7]提出一种基于灰色Ｂ型绝对

关联度和稀疏编码的滑动轴承状态识别方法，对早期

摩擦状态和严重摩擦状态进行识别。崔东等[8]分析了

润滑状态变化对齿轮振动和噪声的影响，提出了基于

振动信号频谱变化识别润滑状态的方法。YU等[9]通

过润滑实验表明在不同的润滑状态下，摩擦振动信号

的频带能量特性不同；在此基础上提出了基于 EEMD
和 SVM的润滑状态智能识别方法。LI等[10]基于不

同摩擦状态下振动信号的多重分形谱参数，采用主成

分分析法建立了摩擦状态识别方法。NICHOLAS等[11]

将超声波传感器安装在轴承滚道上，通过滚子经过时

的反射系数判断是否存在润滑油。KORNAEVA等[12]

采集振动信号、润滑压力作为人工神经网络的输入对

润滑状态进行判断，实验结果表明诊断准确率可达到

98%。以上研究均较好的实现了轴承润滑状态的判断。

然而，天轮轴承的运行环境恶劣、工况复杂，外界环境

温度变化大，这些因素都对轴承的润滑状态识别带来

了相当大的挑战。因此，针对天轮轴承润滑状态的识

别仍需进一步研究。基于此，笔者针对现场天轮结构，
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设计了天轮轴承润滑系统和润滑控制策略，研究润滑

状态智能识别方法，采用自动润滑和人工辅助相结合

的方式实现天轮轴承润滑。 

1　天轮轴承润滑系统设计
 

1.1　总体方案设计

天轮轴承智能润滑系统总体方案如图 1所示，主

要包括控制模块、监测模块和注脂模块 3部分。图 1
中实线表示润滑系统的润滑管路，虚线表示信号传输

线连接方式。注脂模块主要包括润滑泵、注油管路、

抽脂泵、分油器、换向阀等设备，是润滑系统中动作的

执行模块。其中润滑泵站用于对上、下天轮轴承供脂，

可布置在天轮平台或地面上；换向阀、分油器布置在

天轮平台上，用于润滑油路的切换；对于滚动轴承润

滑，注油管路可直接连接到轴承腔内，而对滑动轴承

进行润滑时，则可根据现场实际情况选择将注油管路

连接到注油枪或连接到天轮轴中心孔进行注油；抽脂

泵用于废脂回收。控制模块主要包括 PLC控制柜和

中间控制器，通过 RS485现场总线连接，用于控制注

脂系统中各执行元件的动作，是润滑系统中动作的决

策模块。其中，PLC直接控制润滑泵站和换向阀，中

间控制器作为二级控制单元布置在上、下天轮平台上，

直接受控于 PLC。
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图 1    天轮润滑系统总体设计方案

Fig.1    Design scheme of head sheave lubrication system
 

监测模块包括压力传感器、振动传感器、温度传

感器、末端传感器、液容积式计量传感器、数据采集

模块等设备。通过压力传感器监测轴承内部油脂阻

力，温度传感器获取注油管路的温度，末端传感器通

过光学系统判断润滑脂是否注入轴承座内部[13]。注

油端盖上固定振动传感器和温度传感器，实时采集轴

承振动和温度数据，用于判断轴承内润滑状态。同时，

监测模块通过交换机和无线网桥将数据远程传输至

监控主机上，实时显示润滑系统的运行状态。

润滑系统工作时，PLC根据润滑周期控制润滑泵

站启动，通过主管路输送润滑脂至上、下天轮平台。

根据天轮平台上换向阀通道的切换实现天轮轴端轴

承和游动轮轴承的逐点润滑，利用液容积式计量传感

器、末端传感器和分油器实现润滑脂的定量输送。其

中，对天轮轴瓦润滑时，现有研究中提出的轴中心孔

润滑方案可实现轴瓦的自动润滑。而对于现场应用

中的天轮轴瓦设备，由于其不易改造，则需要人工辅

助进行润滑。 

1.2　天轮轴承润系统控制策略

本文设计的润滑系统控制方案如图 2所示，以多

传感器采集的润滑系统运行参数为决策依据，上位机

基于润滑状态识别、润滑周期匹配等方法输出润滑决

策到 PLC控制器中，随后 PLC控制器发出对应指令

到中间控制器或润滑设备，进行轴承的润滑。
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图 2    润滑系统控制方案

Fig.2    Lubrication system control scheme
 

上位机中润滑控制策略是实现轴承智能润滑的

关键环节。天轮滚动轴承的控制策略如图 3所示。

具体步骤如下：

(1)润滑系统启动，休止时间结构开始自动润滑或

手动触发润滑。休止时间长度可根据轴承的再润滑

周期公式[14]确定，即

Tz = K
1.4×107

nd1/2
−4d (1)
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其中，Tz 为润滑周期；K 为校正系数，受外界温度、湿

度、载重等多因素影响；n 为轴承的转速，r/min；d 为轴

承的内直径，mm。采用少量多次的方式对轴承进行

润滑，可将 Tz 分为 m 份，则休止时间长为 (Tz/m) s。
(2)控制柜发出开泵指令，控制润滑泵开启，开始

供油。

(3)计算润滑系统注入油脂量，与预设的注油量比

较。油脂注入量根据系统中的液容积式计量传感器

和末端传感器来确定。根据轴承手册，滚动轴承润滑

脂补充量可根据经验公式[15]计算：

G = 0.005DB (2)

其中，G 为轴承润滑脂补充质量，g；D 为轴承的外直

径，mm；B 为轴承的厚度，mm。预设的油脂注入量为

(G/m) g。
(4)当检测到流量达到预设值后开始逐点循环润

滑，重复步骤 (2)、(3)，所有润滑点润滑完成后关闭润

滑泵。若检测到流量未达到预设值则报警处理。

(5)开始重新计算休止时间，休止时间根据提升系

统运行时长自适应确定，以此解决固定润滑周期时提

升系统长时间运行导致的润滑不良情况，或长时间未

运行造成的润滑脂浪费情况。具体实现方式为通过

采集的轴承振动信号判断提升系统的运行状态。提

升系统运行时轴承振动幅值增大，超过设定的阈值后

便开始计时，提升机停止时轴承振动减小到低于阈值，

停止计时，由此实现提升机运行时长与润滑周期的匹配。

(6)在整个休止期间通过采集的温度参数实时判

断轴承润滑状态，判断为润滑不良时通过定步长调整

校正系数 K 改变润滑周期，当润滑状态良好时则等待

休止时间结束进入下一次润滑循环。 

2　天轮润滑异常状态识别

润滑状态的准确识别是实现智能润滑的关键步

骤，笔者基于数据驱动方法的天轮轴承润滑异常状态

进行识别研究。 

2.1　润滑状态对天轮轴承温度变化影响

文献[16-20]指出，不良的轴承润滑状态会引起温

度的小幅度升高，润滑效果最好时温度最低。因此轴

承的温度可作为表征润滑状态的指标。提升系统天

轮位于户外，受外界环境温度影响大，冬夏季节天轮

轴承温度相差 30 ℃，如图 4所示。图 4(a)为冬季时

某矿主提升机下天轮轴承温度变化，可以看出轴承最

低温度低于 0 ℃。在提升系统运行过程中，轴承温差

迅速上升。停止运行后轴承温度逐渐平缓下降。图 4(b)
为夏季主提升机下天轮轴承温度变化，轴承最高温度

达 35 ℃。当提升机运行时轴承温度开始上升，对应

的温差迅速增加。当提升机停止运行后，轴承温度下

降，温差变化幅度减小。从整体变化趋势，不同季节

时轴承温度及温差变化趋势基本相同，温差受提升系

统运行状态影响大。因此可采用轴承的温差进一步

分析不同润滑状态对轴承温度的影响。

笔者采集润滑后和长期未润滑时天轮轴承温度，

并提取温差特征值进行比较。天轮轴承温度采集间

隔为 30 d，期间未对天轮轴承进行润滑。为了尽可能

减少其他因素干扰，2次实验均在相同工况下进行。

采集主提下天轮轴承温度数据，得到的天轮轴承温差

特征值如图 5所示。图 5(a)为润滑后下天轮轴承温

度变化。此时最大温差为 0.8 ℃，出现在提升系统初

始运行阶段。约运行 1.5 h后提升机天轮轴承的最大

温差开始保持稳定。此时温差平均值在 0 ℃ 附近。
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图 3    轴承智能润滑工作流程

Fig.3    Intelligent lubrication strategy process
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长期未润滑工况下采集的下天轮轴承温度数据，如

图 5(b)所示。提升系统运行后天轮轴承温度迅速上

升，最大温差接近 1.9 ℃，远大于润滑良好情况下。运

行约 1.5 h后温差特征值趋于稳定，此时温差幅值仍

大于润滑良好情况下。

虽然提升系统运行工况复杂，各项干扰因素会对

天轮轴承的温度变化造成较大的影响。但一定工况

下轴承温差特征值仍可反映润滑状态的变化，因此本

文基于温差数据进行润滑异常状态智能识别方法

研究。 

2.2　支持向量数据描述

支持向量数据描述 (Support Vector Data Descrip-
tion, SVDD)方法属于单值分类算法，将支持向量机中

的超平面改进为超球体，即在高维数据样本空间中构

造一个能够包含所有目标样本数据集的最小封闭体

积的超球体，根据测试样本落在超球体内外侧实现分

类[154]。现场环境下系统的故障数据难以采集，反而拥

有大量系统正常运行产生的正样本数据，因此 SVDD
方法可适用于现场系统运行工况评估与异常工况识

别[21-23]。

基于 SVDD方法的数据异常识别流程如下：

(1)构建训练样本集和测试样本集，其中训练样本

集中全部为正样本数据，测试样本集中包含正样本和

故障样本。

(2)提取训练样本集中数据的特征值，组成高维特

征值集。采用时频分析方法对数据进行处理，对分解

后的信号的时域和频域特征进行提取，特征的选择参

考文献[21]。
(3)对高维特征集进行降维处理，消除高维特征集

中的冗余和干扰。

(4)对于给定的正样本数据高维特征集，通过优化

算法找到一个最小体积封闭的超球体，将全部数据都

包含在内，由此构建了 SVDD异常识别模型。

(5)提取测试样本集中特征值，采用相同方法进行

降维处理，得到的低维特征集代入构建的 SVDD异常

识别模型，确定异常识别模型的准确率。

(6)得到满意的 SVDD模型后，使用该模型对未

知标签的样本进行分类，从而实现异常识别诊断。

对于基于数据的机器学习方法，高质量的特征集

可有效提高诊断准确率，笔者从优化算法、特征降维

方法等多方面来提高特征集质量。 

2.3　特征降维方法 

2.3.1　基本理论

从样本数据中提取的高维特征集中必定包含大

量的冗余和干扰，极大影响了分类算法的准确率，因

此必须进行特征降维处理，得到表征高维数据的低维
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winter and summer
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wi j

本质特征。局部保留投影算法 (Locality  Preserving
Projections，LPP)是一种常用的特征降维方法 [24]。

LPP算法中构建的权重系数能够表示近邻点之间的

距离信息，即样本点的欧式距离来确定权重 ，即

wi j =

 e−
∥xi−x j∥2

t ，xi与x j是近邻

0，xi与x j不是近邻
(3)

从式 (3)可以看出，当原始空间中近邻点 xi 和 xj

的欧式距离越近，则权重越大，欧式距离越远，则对应

的权重系数越小，基于此构建的最小化目标函数为
min

n∑
i=1

yi−
k∑

j=1

y j


2

wij =min ATXLXT A

s.t. ATX DXTA = I

(4)

L = D−W

D = diag


 N∑

j=1

wij


N

i=1


式中，y 为降维后的数据点；X为由原始空间数据点 x
组成的矩阵；W为权重 wij 组成矩阵；I为单位矩阵；A
为投影矩阵；D为对角线矩阵；L为拉普拉斯映射

矩阵。

利用拉格朗日乘子法对式 (4)求解，可得

XLXT A = λX DXT A (5)

式中，λ 为拉格朗日乘子。

求解式 (4)得到特征值后从小到大排列，前 d 个

特征值对应的特征向量构成了投影矩阵 A。 

2.3.2　降维算法优化方法

LPP方法的降维结果会受到选择的近邻点数量

和权重系数的影响，采用粒子群优化算法确定最优的

近邻点数 k。粒子群优化算法 (Particle Swarm Optim-
ization，PSO)是一种经典的群体智能寻优算法[25]。该

算法将待优化的参数视作粒子，每个粒子都具有位置

和速度 2个属性，其中位置代表了问题的一个潜在解，

根据每个粒子的位置可计算其对应的适应度。适应

度决定了粒子位置的优劣。粒子的速度表征了粒子

移动的方向和距离，每个粒子的速度可根据个体最优

值和群体最优值动态调节。每次迭代粒子更新一次

位置与速度，并计算适应度，通过比较不断更新个体

最优适应度和全局最优适应度，实现全局最优值的寻

找，如式 (6)[26]所示。 vk+1
i = ωvk

i + c1r1

(
ps− xk

i

)
+ c2r2

(
pg− xk

i

)
xk+1

i = xk
i + vk+1

i

(6)

式中，v 为粒子的速度；k 为粒子的迭代次数；i 为第 i

个粒子；ps 为个体极值最优位置；pg 为群体极值最优

位置；c1、c2 为非负的常数，c1 为个体学习因子，c2 为
群体学习因子； r1、r2 为分布在[0，1]的随机数；ω 为惯

性权重，主要控制前一刻速度对当前速度的影响。

采用粒子群算法优化 LPP降维算法中参数时，

不合适的目标函数会导致优化结果不满足降维需求。

因此必须构建合适的目标函数才会使优化具有意义。

对于一组数据，其线性变换前后信息熵不会发生变

化[27]，即高维特征集与其线性变化结果具有相同的信

息熵。如果降维算法能够有效地描述高维数据集，那

么线性处理前后的高维数据集降维后，得到的低维特

征的信息熵变化也应保持很小。基于该特点，本文以

低维特征集的信息熵构成目标函数，判断降维算法的

效果。在信息理论中交叉熵可用于度量 2个概率分

布的差异性信息，2个随机变量越相似，对应的交叉熵

越小。因此本采用交叉熵作为适应度，来评价降维后

的 2个低维数据之间的差异，具体的计算流程如图 6
所示。
 
 

开始
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图 6    适应度函数计算流程

Fig.6    Calculation process of fitness function
 

(1)对高维数据 Xn×m 进行线性变换，构造矩阵

Zn×m，按照式 (7)进行变换 (i=1,2,…,n)。

zij =


(
xij+ xi( j+1)

)/
2 , j = 1,2, · · · ,m−1(

xim+ xij
)/

2 , j = m
(7)

(2)根据粒子位置对应的参数，采用 NME算法进

行对高维数据 X和 Z进行降维计算，得到低维数据

Y1 和 Y2。

DJS

(3)计算低维数据 Y1 和 Y2 的相对熵，以此为粒子

的适应度返回到粒子群优化算法中，相对熵 的计

算公式为

第 2 期 　寇子明等：矿井提升机天轮智能润滑系统设计及控制策略 1235



DJS (p,q) = −
N∑

i=1

p (y1i)·lg q (y2i) (8)

式中，p(y1i)为低维数据 Y1 的概率分布；q(y2i)为低维

数据 Y2 的概率分布。 

2.4　异常识别模型框架

基于优化的 LPP算法与支持向量数据的润滑状

态异常诊断框架如图 7所示。
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集, 测试模型
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正样本数据集
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正样本和故障样本数据集

图 7    润滑异常状态智能诊断框架

Fig.7    Intelligent diagnosis framework for abnormal

lubrication conditions
 

主要分为训练和测试 2部分，具体实施步骤为：

(1)特征提取。利用小波包分解方法对采集的温

度信号进行处理，得到终端节点系数，通过底层小波

包节点系数进行单支重构，得到分解信号。对重构后

的信号提取敏感特征，组成高维特征集。

(2)特征降维。利用 PSO-LPP降维方法，对第 1
步中得到的高维特征训练集进行降维处理，得到高维

特征集的映射矩阵，从而获得训练集和测试集的低维

特征集。

(3)异常识别。以上一步得到的低维训练特征集

作为输入，用于训练 SVDD模型，采用粒子群算法对

模型参数进行优化。测试阶段以低维测试特征集作

为输入，采用训练好的异常识别模型对故障样本进行

识别，输出诊断结果。 

2.5　异常识别模型测试

采用现场采集的温度数据对所提方法进行验证，

构建的测试样本集数量为 50个，其中前 10个为正样

本，后 40个为故障样本数。其中温差的幅值特征和

标准差特征变化如图 8所示。与正样本相比，故障样

本的特征值明显增大，但有部分故障样本特征值变化

并不明显，因此从单个特征值中难以直接判断轴承的

润滑状态。

采用所提异常识别模型对样本进行分类。模型

的识别准确率见表 1。不同低维特征维数下所提的

PSO-LPP-SVDD方法识别准确率有所不同，低维特征

维数为 3时达到最大值，为 82%。
 
 

表 1    不同异常识别模型准确率

Table 1    Accuracy of different anomaly identification models

降维后的特征维数 3 5 7 9

PSO-LPP-SVDD识别准确率/% 82 74 74 76
 

选择降维后的特征维数为 3时，模型的识别结果

如图 9所示。在 PSO-LPP-SVDD模型的识别结果中

部分故障样本到球心的距离小于超球体半径，如在第

30个样本附近有多个故障样本被误诊断。但整体效

果上，PSO-LPP-SVDD模型的识别结果中，样本分类

效果明显，故障样本远离正常样本，只有少数故障样

本落在超球体半径处。这说明优化后降维方法能够

有效增大异类样本之间的距离，得到分类效果更优的

低维数据集，进而使异常识别模型能够更准确地判断

轴承润滑异常状态。 

3　某矿主立井天轮智能润滑系统现场试验
 

3.1　天轮智能润滑系统安装

天轮轴承智能润滑系统在某矿副井多绳摩擦提
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图 8    测试集样本特征

Fig.8    Test set sample characteristics
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升系统进行现场试验，该矿提升系统的型号为 JKMD-
5×4Ⅲ，天轮直径为 5 m，提升机提升钢丝绳数为 4根，

最大提升高度为 1 075 m，最大运行速度为 11.78 m/s。
同时该矿安装有另一套提升系统用于交通罐的提升，

整个井架上布置有 4层天轮平台，最高离地面高度约

为 41 m，最低离地面高度为 23 m，需要同时对 4个天

轮进行润滑。根据前文研究的天轮轴承润滑方案，结

合现场情况，构建的润滑系统及其在天轮平台的安装

示意如图 10所示，润滑泵站和 PLC控制柜布置在最

下层天轮平台，通过外直径 32 mm、内径 26 mm的不

锈无缝钢管向各天轮输送润滑脂，润滑泵的参数见

表 2。每层天轮平台上的布置基本一致，润滑管路和

控制线路尽量贴着天轮平台上的围栏布置，避免影响

工作人员的通行。中间控制器和分油器安装在防护

箱内，避免雨水、大雪等对设备的影响。振动传感器、

温度传感器安装在轴承座上，实时采集轴承信号。排

脂泵同样固定在轴承座端盖上，从端盖底部的排脂口

处吸排油脂。通过在端盖上预设的注油口进行滚动

轴承润滑，注油口处安装末端传感器，检测油脂的流

动。对于游动轮轴承通过注油枪进行润滑，在天轮前

方护栏上安装控制开关，方便直接控制润滑泵站的启停。
 
 

表 2    润滑泵具体参数

Table 2    Specific parameters of lubricating pump

参数 特征

泵类型 柱塞泵

油箱容积/L 60

输入电压 AC220 V(400 W)

输出压力/MPa 40

柱塞排量/(mL·min−1) 500

适用油脂 NLGI—0号、1号、2号

适应温度/℃ −20～+70
  

3.2　天轮智能润滑系统应用

润滑系统运行时可实时查看润滑系统泵站油脂

剩余量、管路压力、管路温度，以及轴承的温度和振动

等参数，直观了解润滑系统的运行状态。天轮轴承的

润滑量和润滑周期、排脂量和排脂周期均可自由设置。

同时润滑系统可以对各类报警信号进行记录与导出，

方便工作人员随时查看。

智能润滑系统使用前后天轮轴承温差变化如

图 11所示，可以看到使用润滑系统维护后温差的变

化程度明显降低，且长时间运行过程中天轮轴承温度
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图 9    异常识别模型检测结果 (LPP，no_dims = 3)

Fig.9    Detection results of anomaly recognition models(LPP，

no_dims = 3)
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图 10    润滑系统安装示意

Fig.10    Lubrication system installation instructions
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图 11    智能润滑系统维护前后轴承温差变化对比

Fig.11    Comparison of bearing temperature difference before and

after intelligent lubrication system maintenance
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并未出现突增情况，整体变化平稳，说明天轮智能润

滑系统对轴承维护的有效性。 

4　结　　论

(1)设计的润滑系统可实现单泵多点不同用脂量

独立配送功能。提出的基于轴承润滑状态识别的润

滑周期调节方法，以及基于轴承振动信号振幅的润滑

周期匹配方法，解决了固定润滑周期难以适应现场复

杂工况的问题。设计的废脂定时定量自动回收功能

解决了轴承座内润滑脂溢出污染天轮平台的问题。

(2)天轮轴承的温度差特征值可反映轴承的润滑

状态，可作为润滑异常状态识别模型的样本数据。提

出的 PSO-LPP-SVDD方法可用于反馈调节天轮轴承

的润滑周期。

(3)天轮轴承智能润滑系统的现场应用结果表明，

智能润滑系统能够实时获取润滑系统的运行参数，并

远程查看并控制其运行状态。此外智能润滑系统保

证了润滑效果的持续性和均匀性，满足现场应用需求，

达到煤矿现场预期的应用效果。

(4)为深入分析天轮组轴承的润滑特性，后续进一

步研究天轮组轴承智能润滑系统在后期运行过程中

润滑压力、温度等数据随时间的变化规律。此外，搭

建天轮组轴承智能润滑模拟系统，分析不同润滑状态

对天轮组振动的影响，以及不同轴承状态下的润滑策

略，进一步完善润滑系统在不同运行工况下的多点智

能精准配送。
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