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Abstract: Flue gas emitted by coal-fired power plants contains a large amount of nitrogen oxides (NO,). Solar energy
driven photocatalysis technology provides a novel approach of near-zero emission for flue gas denitrification, however the
efficiency of single photocatalytic denitrification is limited. To achieve efficient removal of high concentration NO from
coal flue gas, the development of a collaborative oxidation denitrification technology based on photocatalysis is urgently
required. Defective TiO, (D-TiO,) nanosheets with rich oxygen vacancies were first prepared by the hydrothermal method
combined with H, reduction treatment, and then CuO, was loaded onto D-TiO, surface via the liquid phase impregnation
approach to synthesize CuO,/D-TiO, nanocomposites. Microscopic composition and energy-band structure of composite
catalysts were determined by the transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), room
temperature electron paramagnetic resonance (EPR) and UV-visible diffuse reflection spectroscopy. The results showed
that the supported copper species was mixed valence CuO,, and the modification of CuO, did not affect the micro-morpho-
logy of D-TiO,, but enabled its conduction-band potential negative shift, consequently enhancing the reduction ability of
photogenerated electrons. CuO,/D-TiO, composites were served as the catalysts to activate H,O,, and the effect of CuO,
loading amount on NO removal rate was studied under simulated solar light irradiation. By using the optimal 5% CuO,/D-
TiO, catalyst, the influences of simulated flue gas velocity and initial NO concentration on denitrification activity were in-
vestigated. DFT calculation results based on the density functional theory indicated that oxygen vacancies were conduct-
ive to NO adsorption and activation. Photoelectrochemical characterization and EPR test results displayed that incorporat-
ing CuO, not only promoted the charge separation efficiency of D-TiO,, and also played a crucial cocatalyst role as the
active sites of H,0O, decomposition to produce -+ OH. Radical quenching tests indicated that the surface *+ OH was
primary active radicals for NO photo-oxidative removal. The synergistic effect of cocatalyst CuO, and oxygen vacancies
elevated the removal rate of NO from 15.1% of TiO, to 63.8% of 5% CuO,/D-TiO,. Moreover, 5% CuO,/D-TiO, was im-
mobilized on the surface of modified carbon fiber (MCF) to construct monolithic catalyst CuO,/D-TiO,/MCF. The photo-
thermal effect of MCF supporter can convert the absorbed near-infrared light into heat, producing local temperature rise on
the surface of CuO,/D-TiO,. It dramatically accelerated photoelectrons interface transport and H,O, decomposition reac-
tion kinetics, further improving NO removal rate up to 95.2%. Additionally, the main product of NO photo-oxidative re-
moval was NO5, which can be used to produce nitrogen fertilizer. The detected byproduct NO, was only 4.7 mg/m’. The
concentration of NO, and residual NO were much lower than the ultra-low emission standard of coal-fired boilers with
NO, concentration of no more than 50 mg/m’. Durability test results showed that this monolithic catalyst CuO,/D-
TiO,/MCF can purify high concentration of NO in flue gas under continuous operation conditions. The foregoing results
demonstrate that the photothermal synergistic catalytic system based on CuO,/D-TiO,/MCF has a favorable application

prospect in the field of industrial flue gas denitrification and nitrogen resource utilization.
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) Culi 5380/ %
Hei o o
BLibioea = S
1% CuO,/D-TiO, 1.0 0.98
3% Cu0,/D-TiO, 3.0 297
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Fig.1 Experimental setup for photothermal catalytic activation of H,0, to eliminate NO in simulated flue gas
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Fig.2 XRD patterns of CuO,/D-TiO, composite photocatalysts

and their NO removal activity from simulated flue gas
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Table 2 Performance comparison of NO removal based on photocatalytic oxidation

HEALF IS AT NOMEFR=/% Sk
2-C3Ny/TiO,@C Bt 100x10°6 NO, 5% H,0,, 500 Wik 90.7 [54]
Si-TiO, NRsPA % 15 300x107° NO, 70%JE, 125 WoRAT 67.1 [55]
B-TiO,-3GOE &) 400x107° NO, 30% H,0,, 350 W] 50.4 [56]
2-C3Ny/Ag/AgsPO AW 400x1076 NO, 30% H,0,, 300 W1TAT 73.0 [57]
Bi,WO4-Fe, WO &4 400x10"° NO, 30% H,0,, 300 WikJ 91.0 [58]
P25/Fe;0,@Si0, Z45Y) 50x107% NO, 70% 5, 500 WiR T 38.9 [59]
ZfLig-C3N4(0.12CN) 400x10"° NO, 30% H,0,, 300 WRT 40.4 [60]
5% Cu0,/D-TiO,/MCFIX 300x107% NO, 3% H,0,, 300 WiAT 95.2 3
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