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Abstract: The thermo-mechanical properties of deep reservoir rocks, especially the damage and failure characteristics un-
der heating-cooling cycles, are of great importance to the stability analysis of well wall and the evaluation of geothermal
extraction efficiency for the enhanced geothermal systems. In this study, the notched semi-circular bend (NSCB) granite
samples were first subjected to varying cycle heating-cooling treatments, and then were submitted to three-point bending
tests so as to obtain the model I fracture features. Based on the crack propagation gauge (CPG) measurement and digital
image correlation (DIC) technique, the model I fracture toughness, fracture process zone (FPZ), crack propagation velo-
city and fracture surface topographic features of the samples after varying cyclic heating-cooling treatments were studied.
The experimental results indicate that when the number of heating-cooling cycles reaches 10 or more, the brittleness of the
granite specimens is obviously weakened, whereas the pre-peak softening and post-peak ductile responses are enhanced.
The fracture zone of granite is gradually developed from the crack tip. The FPZ length tends to first increase and then de-
crease with increasing load, and the mode I fracture toughness, maximum length of FPZ and average crack propagation ve-
locity decrease exponentially with increasing number of heating-cooling cycles. The fracture surface becomes more un-
even with the increase in the number of the heating-cooling cycles. Finally, the mineral composition and microstructure of
granite samples after different cycle heating-cooling treatments were investigated based on the X-ray diffraction (XRD)
and scanning electron microscopy (SEM) tests. The results show that the peak intensity of XRD and mineral content of the
four minerals decrease with the increase in the number of heating-cooling cycles, while the size and number of the micro-
cracks increase with the increase in the number of heating-cooling cycles. The deterioration mechanism of the granite upon
the heating-cooling cycles includes the combined effects of thermal-induced damage, water quenching damage and water

weakening effects.
Key words: cyclic heating-cooling; fracture toughness; fracture process zone; crack propagation velocity; crack
propagation gauge (CPG) technique; digital image correlation (DIC) technique
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Fig.8 Whole process of the development of the fracture process
zone in granite
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Fig.9 Variation of the maximum length of the fracture process

zone with the number of heating-cooling cycles
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Fig.11 Voltage signal and derivative with respect to time recorded from the CPG on specimen
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Fig.12 Crack tip position and crack propagation velocity of the sample
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Fig.13  Crack propagation paths of samples after cyclic heating-cooling treatments
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Fig.14 Variation of crack propagation velocity with the

number of heating-cooling cycles
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Fig.15 Failure modes of samples after cyclic heating-cooling treatments
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Fig.17 Mineral composition contents of granite powders after

cyclic heating-cooling treatments
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