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Effect

of Supercritical Carbon Dioxide (SCCOQO,) on the mechanism of change in
pore and fracture structure of coal with different moisture content

ZHANG Xiaodong', JIN Shasha', ZHANG Yu’, ZHANG Shuo', HAN Lei'

(1.School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China; 2. The First Institute of Resources and Environment

Investigation of Henan Province, Zhengzhou 450000, China)

Abstract: When the CO, in a supercritical state (SCCO,) is released from deep coal seams, it reacts with minerals in coal,

changing the porosity of coal, which in turn affects the effect of CO, sequestration in coal seams and the effect of increas-

ing methane

production. In order to discover the influence characteristics of SCCO,-H,0-coal rock interaction on the

porosity in coal, the experiments on the supercritical CO, reforming coal under different water content conditions were

carried out with coking coal as the research object. Based on the results of mineral composition and porosity measure-

ments, the differences between the main minerals and the changes in pore cleavage at various scales in coal were com-

pared, and the action mechanism of the SCCO, fluid on the pore cleavage properties under various water content states
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was explored. The results show that: (D After the SCCO, treatment, the surface of the coal body is rough and loose, some
fissures are penetrated as a result of mineral dissolution, and the connectivity of micro fissure is improved. 2 The SCCO,
fluid has a “pore-expanding”effect on coal, which is manifested by a decrease of the content of micro- and small pores,
and an increase of the proportion of medium- and large pores, i.e., the conversion of micro- and small-sized pores to large
pores, as well as the improvement of pore connectivity. Furthermore, it is discovered that the fractal dimension of the ad-
sorption pores of the coal samples increases slightly in size and roughness, while the fractal dimension of the seepage
pores decreases significantly, and the complexity and non-homogeneity are reduced. 3 The SCCO, fluid has the best sol-
ubility on the carbonate minerals in coal, followed by clay minerals, and with the increase of water content, the proportion
of carbonate minerals in the extracted coal first increases and then decreases. The SCCO, fluid makes the carbonate miner-
als in the coal samples of the dry basal state and saturated water state dissolve significantly, which effectively improves the
pore structure, and the effect on the coal samples of the saturated water state is better. After the air-dry basal coal samples
were subjected to the SCCO,, the newly formed dolomite minerals gathered in the pore throats to cause the plugging ef-
fect, reducing the original large pore size, which is the main cause of the differential changes in the pore space of coals
with different water content states.

Key words: coking coal; pore and fissure structure; water content; Supercritical Carbon Dioxide (SCCO,); CO, se-

questration
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Table1 Proximate and ultimate analysis of coal samples
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Fig.2 Scanning electron microscope observations of coal samples
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Table 2 Pore structure parameters of coals before and after SCCO, treatment
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Fig.6  Fractal dimension of pores of coal based on nitrogen adsorption
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