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Abstract: The ultra-thick coal seam has a large mining space and a wide range of overburden disturbance. The strong dis-
turbance of loading and unloading caused by the roof collapse can easily exacerbate the failure of floor faults. Studying the
mechanism of the linkage effect between water inrush from the floor fault and roof collapse in ultra-thick coal seam
through numerical simulation is the basis for water hazard prevention and control. The key lies in understanding the coup-
ling characteristics of progressive rock failure and fracture flow under loading and unloading. In this study, the evolution
equations of tension and shear damage under loading and unloading were constructed, and combined with the yield cri-
terion and plastic potential function with effective partial/spherical stress as the basic variable, the plastic-damage con-
stitutive model of intact rock was obtained. The relationship between plastic displacement and strength deterioration dur-
ing tension/shear/mixed loading and unloading was established, using the square tensile shear stress and B-K criterion as
initial and complete fracture criteria, the fracture constitutive model of non-penetrating fracture was formed. The separa-
tion, compression and shear criteria of discrete rock blocks were put forward, and the extrusion, shear friction constitutive
and dilation equations between discrete blocks were established based on experimental data. Based on the conservation of
mass/momentum, the equation of state, and combined with the method of fluid volume and immersion boundary, the simu-
lation theory of gas-water two-phase flow in the fractured rock mass was formed. Thus, the CFDEM numerical calcula-
tion program was developed, and the plastic damage, fracture, extrusion/friction, and fluid properties under loading and
unloading were assigned to solid elements (rock blocks), cohesion elements (non-penetrating cracks), contact pairs (penet-
rating cracks), and Euler units (water and gas) respectively. According to the engineering geological conditions in the
northern mining area of Ningwu coalfield, a numerical calculation model of linkage effect between water inrush from floor
fault and roof collapse in extra-thick coal seam was established. The results indicate that (1) the CFDEM coupling pro-
gram and corresponding theoretical models can numerically achieve the transformation of overlying rocks and floor faults
in ultra-thick coal seams from quasi-continuous to discrete rock, as well as the migration of groundwater in fractures.
(2 Under simulated conditions, the mining fractures envelope line of the fault floor of the ultra-thick coal seam is w-
shaped, with the deepest point exceeding 55 m located on the fault and its hanging wall, the shallowest point 23 m located
on the footwall of the fault, and the failure depth at the intact floor is 24—36 m, which has already connected to the Ordovi-
cian limestone aquifer. (3 Secondary damage is commonly observed on the floor of ultra-thick coal seam. The failure
depth of the intact floor at the advanced working face is 24.0-29.3 m, but it generally increases to 31.5-36.0 m in the goaf.
The total cracks opening of the fault and its hanging wall at the advanced working face is 0.34—0.86 m, but it rapidly in-
creases to 3.6 m in the goaf, forming a dominant channel for water inrush. @ The linkage effect of water inrush from floor
fault and roof collapse is rooted in the collapse instability of key strata in overlying strata, the sinking of masonry beams

and the secondary fracture, which leads to the secondary damage of floor and aggravates the risk of water inrush.
Key words: ultra-thick coal seam; water inrush from floor faults; linkage effect of roof and floor; CFDEM program;
micro-seismic experiment
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Table 1 Material parameters
Ak (lef'“;fl) (MI\IIJC-‘S;*‘) ok N OBk = PN ¥ E/GPa " ¢/MPa
b 1.10 19.27 790.29 5695.38 2.77 20.11 0.21 15.22
WA 0.71 2.71 452.95 3226.76 2.19 1533 0.25 9.88
et 0.45 2.56 308.60 2162.24 2.03 11.85 0.25 7.36
73 0.43 1.98 215.78 1 420.50 1.78 10.21 0.28 4.77
Wb 0.96 16.23 641.76 4451.14 2.82 17.23 0.22 12.35
b 1.52 23.76 731.15 6861.82 273 25.73 0.19 17.03
W 3.66 37.28 1023.10 10435.72 225 41.56 0.19 22.70
W2t 0.32 1.53 176.10 1220.63 1.97 6.52 0.30 3.73
AP o/(°) Nipax/mm D,/GPa Dy/GPa o ,/MPa s/mm sp/mm wl(®)
gl 35 0.36 20.11 9.75 7.31 6.07 0.75 27
Bl 28 0.29 15.33 4.10 472 7.98 1.15 24
e 23 0.20 11.85 0.94 2.71 9.62 2.87 20
I 22 0.41 10.21 3.06 3.43 7.95 1.12 18
itees 32 0.27 17.23 7.24 6.07 6.91 1.06 25
b 41 0.41 2573 11.55 10.75 4.79 0.66 31
WA 4 0.34 41.56 16.31 19.66 5.12 0.70 35
Wizt 25 0.20 6.52 0.90 2.12 9.55 3.53 20
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Fig.5 Comparison of loading unloading shear and seepage experiment and CFDEM numerical results
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Fig.6 Engineering geological characteristics and numerical model
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Fig.7 Simulation results of the roof-floor linkage effect under different advancing distances in ultra-thick coal seam working face
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Fig.8 Changes in stress and crack opening of the floor under overlying rock movement

YT AR HEHZE L=183 m(& 7(c)), f& 1 it 2
K7 By & TR A 65 m(L=147 m) [£ % 50 m(L=183 m),
B NIRRT AR, S EORET SOR R )
WEE R 2 21.5 MPa(h 182 2%k 2.53), {7 F TAE
HI 7 65 mAb o T 76 R 25 X N, 8 m) N g 3% 3 7
5.1~6.9 MPa. im0 75 2 1 K 5 | JEs Al s B “—
WREIR” D K4 Al KS BIARE T UL A4, 552800 K78
R 18, FBOZAE THE B 29.3 m IR IniE
% 35.1 m; @ W25 4% 45 Ab5T J1/E 1N 6.3 MPa/
2.6 MPa 1§ & 7.2 MPa/2.8 MPa, 57 7 14 fil g B 0 Kk,
SEOTYIR B, DAL 2B TFEE M 0.66 m

(L=147 m) B4 % 0.86 m(L=183 m), U 8(c) Firn.
M T AR HEREE L=215 m(& 7(d)), K7 B
BARTFUURIL 1.7 m, fiff K4, K7 28 qh il m g, &
TP %8 46 m, ‘FHOHE AT KT I Z 17.9 MPa; I
Ah, FEAE T UUTE K3 IR I, (i8R As
DX AR AR 156 i) 7 g 5 14 N % 6.9~10.6 MPa., {E 1%
A, 1 TAES 7 69 m RS XA, i1 T H7
)2 UL K1, K2 WA 15, 0T 240
s O As sSSP RAR NG IR, 89 1/ 1A 9.9 MPa/
3.1 MPa 784k} 11.5 MPa/—1.4 MPa, 85 % i M AE
Ko XN B 2B 26,1 m R INE E 31.5 m,



5 6 4]

A AR R R AR RO S TIPS BT AN ) CFDEM #E4LLAE 7Y 2627

@ KIFHEHESERZH 16 m LR ARG A H
il @ 7EWTR N, AR — FE R S oy L 7.2 MPa
FEARZE 3.1 MPa, {H 2 fe/NER 1 oy T3 5678 J i
41 (=3.7 MPa, [ 8(b)), /5724 [ H LI+ S 2 “ILk”
b (D 6 1R (e 2) 2B ETTBE M 0.86 m(L=183 m)
HOMZ 1.07 m(L=215 m), 411& 8(c) Urrn, W2 e H I
A ZIK RS I (5] 9).

T AVEEHERE E L=224 m([&] 7(e)), T A/ET #E 2t
Wi 27 m, HERT ORI SIBEIRE 15.84 MPa, {3 T TAE
AT 13 m A7 B AL, HeRt, Wi 24 45 S0 T K4 5
K5/K6 &2 T Him#E &, H o 5 o3 A 7.2 MPa/
2.8 MPa [ % 1.8 MPa/—2 MPa(}ii /7)., 7EIXFh K2R IE
INE AT, AR T2 ag. O WiE S5 Rk

Hh b‘7J<‘
(c) /KIELEY) (BT 1A =1.28 h)
B9 R RSN AR T2 S KB 5

Fig.9 Simulation results of water inrush from faults in the mining floor of ultra-thick coal seam
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