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Ecological cumulative effects of surface mining areas in semi-arid grasslands:
Evaluation model and application
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Abstract: The research objectives are to reveal the eco-environmental quality of surface mining areas in semi-arid grass-
lands, separate the ecological cumulative effects of anthropogenic activities and examine their evolving trends. Based on
the concept of ecological cumulative effects in mining areas, an assessment index called Surface Mining Areas Eco-envir-

onmental Evaluation Index (SMAEEI) and a quantitative evaluation model of ecological cumulative effects in mining
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areas suitable for semi-arid grasslands were developed. The Shengli Coalfield in Inner Mongolia was selected as the study
site to analyze the spatiotemporal distribution patterns of regional eco-environmental quality and ecological cumulative ef-
fects from 1986 to 2020, and the differences between cumulative effects caused by major anthropogenic activities. The
results show that: (D the SMAEEI is applicable to the surface mining areas in semi-arid grasslands and can objectively
rank the eco-environmental quality across different land-cover types. The study area exhibited an extremely significant de-
cline in eco-environmental quality over the past 35 years, with diminishing spatial differences. Open-pit mines, expanding
urban areas, Xilin River wetlands, and northern grasslands experienced extremely significant or significant degradation
trends. (2 The quantitative evaluation model of ecological cumulative effects for the surface mining areas in semi-arid
grasslands can exclude the influence of climate factors on ecosystems, effectively quantify the cumulative effects of hu-
man activities on mining area ecosystems, and reveal their direction, magnitude, and spatial extent. The Change of Ecosys-
tem Service Value Cumulant (COESVC) in the study area decreased by a total of 11 861.570 3 million yuan, indicating a
negative ecological cumulative effect and a decline in ecosystem services and functions. Areas with high and medium
levels of negative accumulation were concentrated in degraded wetlands, grasslands, urban regions, and open-pit mines.
(3 Surface mining and urban development exerted the most pronounced negative ecological cumulative effects per unit
area. The former exhibited the most severe negative changes per unit time, and the latter had the greatest local impact and
deviation in negative cumulative effects. Grazing resulted in negative ecological cumulative effects over a wider range and
in larger quantities but with the least local impact. Compared with other human activities, the ecosystem services and func-
tions were more stable in relation to grazing. The research outcomes facilitate the shift from the physical quantity changes
of the ecological environment caused by human activities in mining areas to value-based descriptions, providing a feasible

method for estimating the environmental damage costs of regional production and living behaviors in monetary terms.
Key words: ecological cumulative effects; surface mining areas in semi-arid grasslands; eco-environmental evaluation
index; ecosystem service value; ShengLi Coalfield in Inner Mongolia
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Fig.3 Conceptual model of the ecological cumulative effects in mining areas (Modify from Reference[30])
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Fig.4 Flow chart of the quantitative evaluation model of ecological cumulative effects for surface mining areas in semi-arid grasslands
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Table 2 Formulas and explanations of the quantitative evaluation model of ecological cumulative effects for surface

mining areas in semi-arid grasslands
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Table 3 Equivalent coefficients of ESV per unit area in the study area
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KRR 4.09 1.52 0.77 13.44 18.77 0.07 -7.31 —6.45
B 1.72 1.32 1.39 14.40 14.85 0.26 —4.67 —0.55

THIE SR 4.02 2.24 1.47 1.99 0.41 0.17 0 0
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(EY L 0.33 0.43 1.00 0.36 0.53 0.02 0 0

JERL AR 2.98 0.36 0.39 0.24 0.35 0.04 0 0

BRI 2.08 0.87 0.17 4.69 4.44 0.24 0 0
At 28.12 11.67 7.90 54.77 4535 1.39 -15.34 -7.85

RIFgaE, #E R XA SIAERRSAB S AR, R
IS EERIYNE SErI o ed (VAT I 2l YN
RIGS SBT3, #5 SMAEEL 5 A S&H %
22 [] Fy SEARL ] S AP A IS e BEAR K. i T
1986—1990 4F-AIF 5% X TG iy 5ik B I8 e TR . WY 5K
Al A= F= 16 sl BRI, B8 1990 4F K 22 Aif IX 48k 9 A=
BRI | S EL RN A 8h 2 [A] P — B - Aly
IR, B 1986—1990 AFEHEE T F M SR AL H Hb
FBF LIS (B 78 XAE A JE A6 s T30 A SR A
Z50, %I B SMAEEL 55 EZ 025 A C & .
Ak, Z1Go05 X 5 4F SMAEEL, H SR AL H B¢
K EIHAME, I SMAEEI 545 H S BEK AR
A, ik 5 SMAEEL AH G5 i A e 1Y 2 i
FAERN 2 FEK A E, 12 HZ Tt IR d SMAEEL
SR BRK B a1 FET,

SMAEEI' = a,P, +a,P,+b T, +b,T,+¢ (1)

K, SMAEEL SR 2500 T 1 A A8 A58 o A
PMA; Po. Py(T, . T,) 53 5 SMAEEIFH G M 5 5
R0 2 ANFEAKAE (RIRAE); a1 L ax by byFlle

@ BAHA SRS E ESV, 15 . i T b i
FEX S S, BT X AR 32 NS 3l i 2
L, K 1986 452 NETH S 520 0 T4 Fl M. e
U D AR A 4k L, R 2 AT AR £
Hi 78 PR RIEY 5 1986 4F—2, MR 7 ARSI
FRAE - AR R . DIRAEIIREE | Bk A
AR AAEAS N 5, 12 K (1) B H SR R AE
T 1986—2020 4Ef#) SMAEEL', 415 44K Z 500 T
(AR A 25 I 55 M (i ESV, AR, SRR 32 A5 3h
(1) B AR - 7 50 S 45 SR 45 4F SMAEEL'# i 1

LS 2A
2



573

RAERRA: 1 5 KT XA 25 BN : PPAG AR AL 5 N ] 3207

SN A A PR o s RO R R RS oo, PR
VC FIR(S, j i fRAZ (15) ZRHUAI 44 ESV ).
322 SrEE XA BN

i FFE 22 3 Ik 1 B [ AR IR R 28T 3 x)
R XA ST B, B 7EA % i HAD
e tEE RGO T, AJEE 32800 2R (B
SRS M RV LB COESVO) T4 A INET

AESVC) 5 AR T A7 BRSO FAE(E (R FEAR
He SRS (i BRI TESVC) FUFk 2% . EAAR M, 4351
AR ESV, L ESV AR AL (18) 4R AESVC I
IESVC, i = (19) T3 22 B AR BUE AR5
T T/ COESVC, i SN AR BE AT 4]

T VLI, “FETROTA SRS B )7
FAE A IR 5 0 300 A5 25 R GOIRAS N 3L, 554
WRIAR I A A 7S BRI AR 1R, COESVC Rk A S R
U AR fb it o AR SCR g i) 2 T 5 s 8 R X A
A BRI LA TE A R T A SRR
BRGRES I HEI, COESVC REFEAFIE I 4545
MR AR T AR IR B4 xd A 25 BRI .

4 NMRASRZH

4.1 EBMEREM T THHHE

SR G 5T X AR 2 R T ) AR S A Siit
1986—2020 4 SMAEEI £ % 21 R 5 [b (&l 5(a)), If:
L VERLA SMAEEL 1 B{E MAREZ (Bl 5(b)). BF5E
XA S DA O 3, 35 T 53.33%, R,
BELERIRZ (21.69% Fl 21.09%), 1 . 225 5 Fe A%
(3.85% F110.04%). FPrAsfb I, 2255 QR AT E;
IR A AR, 1997 4ERT R 5 a2, 1998—
2004 %A T E B A, 2005—2020 4R 8 T R
TG 1986—1997 4F TR AL 51 I FF, 1998—2020 4%
5 A 5 85 25 25 AR I, 1998—2004 4F 5 T [ a3,
2005—2020 P8 LT B LR AR AR B A
16, 1986-2006 41 it 3l T [ 2= f AR A1, 2007—2020 4
Wesh/NiE BT, SMAEEI ¥J{H | brifE 22 B &R R
1 (-0.005 8 F1-0.000 4), 73l 35 a [AAF5E X A4
B FTR 20 E TR (p<0.01), HESH 2R
EWES (0.01 <p <0.05),

HE— 253 M AR A PR BE T R i 25 AR AR RRAE, (i —
G 2k P 1] 03 4 Ak OB L g 00 1R 4% oo
SMAEEI 25kt 3, Jf 4 /N — k441 SMAEEL
BEHR (slope) A J 28 F ki 6 3R W) S 35 1 45 2R 4l o3
SMAEEI ZE 1kt 5 # it R fk (slope < 0. p=<0.01),
B (slope < 0. 0.01 <p<0.05), A LE (p>

100

S [I-I-l-r“-rrrrrrrrrrr-————-ﬁ—m

N |

-

47 1k

:[(80 nfl

X

=y B

4

< 40 "

& 5l o

b1 i

E

Z 0

}T O XVOoOANFTOXODATODODA T O 0O
OO OO OO — — — — — [\
AN AN O OO ODOODOO O OO
~~~~~~~ [o BN o B o I o\ B o B o\ B o I o i o\ B oV |

FAy

1.00 0.15
R=0.149 4
2080 pochie MY 70555 0.12 g4
paore] LT | L "Il l Il 0.09 12
E II"‘q.-—‘- ul-'l E
m
=040 I 0.06 2
= =
“0.20 0.03 ©
O\O X O AN O 0O 0
A AT ODOD OO OO0 O OO
HHHHHHH [\ I o o I oS I o o I N I o\ B o\ B o\ BN
EA
= SMAEEI5 i 2 SMAEEIFF- %18
- SMAEEIbREZE R A 1 25 SMAEEIF-S4{E LA i 2%

(b)
5 1986—2020 4EF 5 X SMAEEI N[RIAE 4 IR % 1
(a) 2 SMAEEI ¥J{EARMEZE A (b a3 (b)
Fig.5 Proportion of the SMAEEI at different levels (a) and
trends in the average and standard deviation of SMAEEI (b) in the
study area from 1986 to 2020
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Fig.7 Proportion of the COESVC at all levels for different
research objects from 1986 to 2020

() FEANRKIESN A B . RAESFE L
WP 2B N AR R K4 | WU X BB IX
VLR (& 8), LA 2020 45 BRAs W BEEL 5 () S b A Ay
O X, 51 ES B P RAE AR R D A, 35
5% TN RGBSR X A A BN 22 5.

1986—2020 4 3= % A 36 s X 1 i 81 6 ) A 25
FRGOV, (A2, BEEUEE b, X#&{k COESVC
FIFFHBIX > BRI > WA IX > HOlk X (3 4); Hf7
AR SRR I, 20034 COESVC AHOILIX > #f
Mo X > F&8 RT3 > WX . 88 KWt e BFRIX &
HEAR K (96.72%), FURAR IR A A X | Bk H X R0



573

RAERRA: 1 5 KT XA 25 BN : PPAG AR AL 5 N ] 3209

024km N COESVCH

- W G R A R LR R A

COg A7 N\ Bl g f A% b I SRR

T EGIERDE YAl PR E A
Bt IX e 2 M

K8 1986—2020 4F COESVC %40 iy 2s [a] 43 A
Fig.8 Spatial distribution of different COESVC levels from
1986 to 2020
[X. (95.20%. 90.60% F1 62.96%)(I&l 7). i &5 BEMIZE L
F 5% X A% 90 F- 2 COESVC(—4 827.05 L/ WE& %
(3 4), Wolk X A5 28 B (-0.16) RIFHA S RGN
55 KR A e R FIFIEIX, 1 A4y X334 4 i
X, JUHOEWEHIX . & 9 R T 8 AN 3l XA [H]
FHBHE COESVC &k MR AR L IF I, 7T Al
AR R T ) R RO X > WA X > #F
K3 > HiHX . #3E COESVC phkik— e 35
a [A] & N 28985 3l AR 4 2R, AR B/ IMERIRCH

BRI, POl X A IX | HRH X (1 810.41%,

685.63%. 204.34%. 102.99%), i}t BH B4y isf 8] PN 7% K
TRty SR 1) 1 1) B B 3

AR /a
1 6 116 21 26 31
0 —
R
9 30F
[
5 y=—6 019.5x+32 407
m 2
S —60 | B=09144 5 636.3x+25 390
R=06892
-90

— BRI RN COESVCH & B 28

— Wi B X COESVCHML & i 2
FEHLIX I X COESVCHLA il 2
ol X ~ Pk X COESVCHLA it 2%

Ko RIS XA RN ) COESVC £k
Fig.9 COESVC curves of different cumulative durations in
major anthropic zones

g L, TR Bl B AR R X2 A0 A, S SO
BRI - AR et (EHEAS SR R i o Mo ELAF A i B
ZE 5, R, FE5 R A B i A 25 SRR 52 1) 91 1] A

I R, (PR AR R /N 5E RTTR WA
TR 08 o8 P B T R 0 1 A 2 R AU S BH SR AH Y
MY B2 /0N, T2 2 BRI IR o) A Sk A 285 R e R 55 S T
RE R f i RV R RIZY, J5 3 0 ) SRBRLN A SR
AR E i 1K =8 iy N N 1 P €l B s B e
LR TE SRR IX I, R L R AR R P s S U
FHE T ARZ . IR AR R S5 Y AR A I
[ ™ AR, AL R £ ) A A BN A AR
BN, XA RE S B S R Y A A5 R 388 1) AR A AS a0
fih TG S ZUA 56
5 iF it
5.1 SMAEEI HEZEERFRERIEAMYE

K H] Pearson A5 R HT SMAEEIL 545484511
PR OCRE (3R S), BUOE = UG e B ar A AR PR
sl ZEB484R SMAEEIL 5 HA 7 MEFRIY&4E T
KIS 0.71, 2 4E 30 0.74, 205 L SpAE bR
YR OB fe = 1) FVC PRAEYIE (0.70), 7 A~ HR48 b
2 4 S MR 56 BE 2 {E (0.59) 7 0.04, 0.15, X % B
SMAEEI 5 - H6 45 [B] 745 5 i3 1) V- 359 A0 G B, AR
7R R AL A AR SRR (S B .

Ve 32 B T3 PR B PRAG 9 RSEI L &
H: 25 PEA 35 X (Comprehensive Ecological Evaluation
Index, CEED™, LKA X152 X AR S PR B R L 1) T 5
1% Ji% 4 2578 %1 (Arid Remote Sensing Ecological Index,
ARSED™), X [t [R5 %5 SMAEEI ££ 55 X 14 Ul
JEL5 IR, SMAEEI 12 1 551 5 5 K XA SR EE I
i PRS0 R

(1) SMAEEI 5 i BLSCAF B0 DTRL, iR 8C B
BEE. K10 BR T 2019 4E &8 500 5K 5 )5
FEIX S1~S3 iy 2% 5% . %4k I, CEEL, SMAEEI 5}l
FELIHAAR AT, RSET Sl @8 KA B A X Ay A
SHET iR, ARSED MELUABL R R b2 4 25 8] S5 vk
S1 A AN T.7K 3%, CEET ™ S AR Ak 7K 5 i A 5 oA B o A
SMAEEI 50 SEBRIE O, AR 737K A4 5 Ji i it
SR T M 0 A A IR A, AR I P TR AR
SO AR A0 . S2 WA @& KB, RSEI X 5 KA
I 0 ] 320 e 1 08 DA 45 1A 2k 2 A, ARSEL CEEIL
SMAEEI 5&UIAHIAAT, H SMAEEI AH#F ARSEI,
CEEI fig 51 4R B R S A HE 137 1) & Btk S0 5 B
S3 A Hh K R84k X, RSEL, ARSEI M LLA S04 £h
ik 8., CEEL, SMAEEI {R IR i . kb AL 55 1k
X (A S FREE i 22 5%, L SMAEEI AYIZ b 805 B,
a5 R b B 21 A 2 B B R 4 i 1 T ek



3210 # %

F #®

2024 4F55 49 4
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Table 5 Correlation coefficient matrix between indexes and SMAEEI in 2010 and 2015

ARGy WiH BCI ECDI FVC VHI MSI SPWI LST SMAEEI
BCI 1.00 0.66" -0.82"" -0.75" 0.77" -0.59" 037" -0.86"
ECDI 0.66" 1.00 -0.68"" -0.54" 0.46"" -0.90™ 0.65" -0.82"
FVC -0.82" —0.68" 1.00 0.87" -0.83" 0.60"" —0.40" 0.94""
VHI -0.75"" -0.54"" 0.87"" 1.00 -0.74" 043" 027" 0.81""
2010 MSI 0.77" 046" -0.83"" -0.74" 1.00 -025" 0.03 -0.69"
SPWI -0.59"" -0.90" 0.60"" 043" 025" 1.00 -0.84" 0.81""
LST 0.37" 0.65" -0.40"" 027" 0.03 -0.84" 1.00 -0.66"
AR 0.66 0.65 0.70 0.60 0.51 0.60 0.43 0.76
BCI 1.00 0.46"" -0.85"" -0.85" 0.91" -0.35" 0.42"" -0.86"
ECDI 0.46"" 1.00 -0.54"" -0.45" 0.54" -0.50™ 051" -0.57"
FVC -0.85" -0.54" 1.00 0.89" -0.90"" 0.47" -0.50"" 0.94""
VHI -0.85"" -0.45"" 0.89" 1.00 -0.90" 040" -0.37" 0.90"
2015 MSI 091" 0.54" -0.90"" -0.90" 1.00 -0.44™ 0.54" -0.88""
SPWI -0.35" -0.50"" 047" 0.40" -0.44" 1.00 -0.49™ 0.50"
LST 0.42" 0.51" -0.50"" 037" 0.54" -0.49" 1.00 -0.63"
SRR 0.64 0.50 0.69 0.64 0.70 0.44 0.47 0.71
AR RIMCEE 0.65 0.57 0.70 0.62 0.61 0.52 0.45 0.74
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Fig.10 Comparison of different indexes within the entire and local areas in 2019
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Table 6 Average of different indexes for all land-cover

types in 2019

+ B P RSEI ARSEI CEEI SMAEEI
Mt 0.38 0.29 0.04 0.26

WA 0.43 0.09 0.06 0.28
Bt 0.54 0.49 0.90 0.69
Mt 0.52 0.50 0.94 0.73
T 0.25 0.97 0.35 0.37

T B 0.29 0.10 0.02 0.25
PN 0.80 0.70 0.05 0.37
R 0.54 0.76 0.95 0.72
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