
 

基于机器视觉的煤尘环境下掘进空间煤岩界面
感知与精准识别
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摘　要：巷道掘进过程中煤岩识别技术是掘进机截割头自动调整的核心，同样是制约矿山智能化建

设的关键难题之一。针对当前采掘失衡，掘进工作面缺乏成熟有效的煤岩识别方案，现有基于图

像的煤岩识别模型存在分割精度差、无法灵活部署等问题，提出一种应用在掘进工作面下基于图

像分割的煤岩截割界面感知与精准识别方法。该方法结合掘进工作面实际截割情况，采用 Mobile-

NetV2 特征提取网络作为 DeepLabV3+的主干网络，使模型更好地兼顾分割精度和模型复杂度；将

空洞空间卷积池化金字塔模块输出的高级特征进行通道注意力 (SE) 操作，分配通道权重以强化对

重点特征信息的训练；在主干网络输出的浅层特征引入通道空间注意力 (CA) 机制，使浅层特征图

中的低级表征信息加权，从而设计出融合双注意力机制于 DeepLabV3+的煤岩截割界面识别模型。

同时搭建煤尘环境下煤岩识别实验平台模拟掘进机截割后形成的煤岩截割面，研发巷道掘进过程

中煤岩截割界面采集方法，并以实际矿井的掘进工作面为工程背景，验证该煤岩识别模型的分割

精度以及实际应用性。研究结果表明：SE-CA-DeepLabV3+模型的平均交并比和平均像素精度分别

为 97.15% 和 98.51%，相较于其他模型具有更优的分割性能。将所建立模型对来自陕北试验矿井

掘进工作面的原始煤岩图像进行验证，平均误差为 0.7%，每秒传输帧数为 43 fps，满足井下现场

应用部署条件。
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Abstract: The coal-rock identification technology in the roadway excavation process is the core of the automatic adjust-
ment of roadheader’s cutting head, and it is also one of the key problems restricting the development of intelligent mines.
In view of the current mining imbalance, the excavation face lacks a mature and effective coal-rock identification scheme,
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and the existing image based coal-rock identification models have problems such as poor segmentation accuracy and inab-
ility to flexibly deploy, a coal-rock cutting interface perception and precise recognition method based on image segmenta-
tion is proposed in the heading face. This method combines the actual cutting situation of the excavation working face and
uses the MobileNetV2 feature extraction network as the backbone network of DeepLabV3+, so that the model can better
balance the segmentation accuracy and model complexity. The channel attention (SE) operation is performed on the ad-
vanced features output by the Atrous Spatial Pyramid Pooling module, and channel weights are assigned to strengthen the
training of key feature information. The channel spatial attention (CA) mechanism is introduced into the shallow features
output  by  the  backbone  network  to  weight  the  low-level  representation  information  in  the  shallow  feature  map,  thus
designing  a  coal-rock  cutting  interface  identification  model  that  integrates  the  double  attention  mechanism  in
DeepLabV3+. At the same time, an experimental platform for coal-rock identification in a dusty environment is built  to
simulate the coal and rock cutting surface formed by the roadheader after cutting, and the coal-rock cutting interface ac-
quisition system in the process of roadway excavation is developed. Taking the actual mine excavating face as the engin-
eering background, the recognition accuracy and practical applicability of the coal-rock identification model are verified.
The research results show that the average intersection ratio and average pixel accuracy of the SE-CA-DeepLabV3+ net-
work model are 97.15% and 98.51%, respectively, which have better segmentation performance than other network mod-
els. The established model is used to verify the original coal and rock images from the heading face of the experimental
mine in northern Shaanxi,  the average error is  0.7%,  and the number of transmission frames per second is 43fps,  which
meets the deployment conditions of downhole field applications.
Key words: coal-rock cutting interface；SE-CA-DeepLabV3+；roadway excavation；coal-rock identification platform；

image segmentation
 

目前我国煤炭智能化开采仍处于初步阶段，智能

化掘进工作面作为矿山智能化建设的重要组成之

一[1-2]。掘进机自适应截割作业需要具备自动跟踪煤

层边界动态变化的感控能力，煤岩界面识别作为巷道

智能掘进的前沿技术，使掘进机贴近煤层边界进行截

割作业，可以提高巷道掘进效率和巷道截面成形质量，

同时抑制掘进机强烈震动达到高效掘进。但掘进工

作面设备的自动化截割程度远落后于全自动化的综

采工作面设备，现有掘进工作面大多依赖人工经验控

制掘进工序，为确保工作安全，工作人员会以牺牲效

率的方式进行调速控制[3-5]。煤岩识别技术的应用能

够快速且准确地定位煤层和岩层的位置，从而控制掘

进机截割头和悬臂的方向、速度及伸缩量，实现掘进

机的自适应截割作业。因此，实现煤岩界面识别成为

智能掘进的有效途径之一，而传统的煤岩识别技术[6-8]

(振动测试法、截齿测力法和声波探测法等)存在改造

成本高、设备易损坏、识别结果受实际工况影响大等

难题，为此笔者提出基于图像的煤岩界面识别技术，

旨在提高巷道掘进效率和智能化水平，从而为巷道智

能掘进提供技术支持。

近年来，得益于图形处理单元的发展，以深度卷

积神经网络代替人工操作提取目标特征。许多学者

对深度学习进行了大量的研究[9-11]，在智能开采领域

取得了丰富的研究成果。华同兴等[12]利用 Faster R-

CNN算法实现煤岩图像中煤层和岩层的识别，通过理

想针孔线性成像模型定位到煤层角点坐标值，为自动

调整采煤机滚筒提供了数据依据。孙继平等[13]利用

灰度共生矩阵从煤岩图像中提取出 22个纹理特征，

通过 Fisher判别法建立煤岩分类器，实现对煤岩界面

的准确识别。吴德忠等[14]提出一种基于边界跟踪算

法和人工神经网络的煤岩界面识别方法，为巷道掘进

机和采煤机滚筒空间位置的调整提供依据。伍云霞

等[15]针对训练样本不足情况下的煤岩图像识别问题，

提出了一种局部约束的自学习 (LCSL)煤岩识别方法，

利用 SVM算法对煤岩图像进行分类识别，用于井下

采煤工作。王建才等[16]提出一种改进的 YOLOv5煤

岩图像检测方法，将 CBAM注意力机制和 Trans-
former添加到模型中，完成对煤岩图像分类。语义分

割技术是像素级别的检测任务，通俗的说是对煤岩图

像中每个像素进行分类，如煤层、岩层等。语义分割

算法在智能医学图像分析、遥感图像技术、无人驾驶

等众多领域成为研究热点。朱戎等 [17]提出改进的

DeepLabV3+地物分类算法，解决了对道路等目标分

割不连续的问题。宁纪锋等[18]提出基于卷积注意力

模块改进的 DeepLabV3+模型，有效克服无人机遥感

影像中对地膜农田分割不准确的问题。综上所述，目

前关于煤岩识别相关的研究主要聚焦在目标检测算

法对煤岩图像的识别，在掘进过程中煤岩界面形态多
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样，目标检测算法不能精准定位煤岩交界位置和精细

化识别煤岩分割区域，而现阶段针对掘进过程中的煤

岩自动精准识别技术研究较少，亟需做进一步研究。

鉴于此，笔者结合掘进巷道断面形态特点和实际

工作环境，提出了一种基于 SE-CA-DeepLabV3+模型

的掘进空间煤岩截割界面感知与精准识别方法，搭建

了煤尘环境下煤岩识别实验平台，在煤尘环境下模拟

掘进机截割后形成的煤岩截割面，并以实际掘进工作

面为工程背景，验证该煤岩识别模型的分割精度以及

实际应用性，实现在掘进过程中对煤岩界面进行识别，

确定煤层和岩层的分布情况。研究成果为提高掘进

效率、改善巷道截面成形质量、推动采掘智能化和无

人化控制技术提供了科学理论依据。 

1　基于 SE-CA-DeepLabV3+模型的煤岩图像
语义分割算法

 

1.1　图像语义分割算法基础理论

图像分割是一种计算机视觉中的重要任务，它能

够自动地将图像中的每个像素点划分到不同的区域

中。DeepLabV3+是一种基于编码器解码器结构的图

像语义分割网络，由 Google团队开发。目前编码器

解码器结构已经成为图像语义分割模型的主流框

架[19]，编码器模块是通过下采样操作提取图像的高级

语义信息，而解码器是将编码器获取到的高级语义特

征通过上采样操作还原至原始图像分辨率，从而对还

原为初始分辨率的特征图进行识别，其结构如图 1
所示。

图 2为 DeepLabV3+算法检测煤层和岩层的示意。

原始煤岩图像输入模型后，首先由主干网络 Xcep-
tion对图像进行特征提取，提取出的网络特征分为

2支：一支是主干网络最后一层输出的高级语义特征

送入空洞空间卷积池化金字塔 (Atrous spatial pyram-
id pooling，ASPP)模块中；另一支是主干网络中间层

输出的浅层特征送入解码器模块。其中，ASPP模块

由一个 1×1普通卷积层、3个不同空洞率 (分别为 6、
12、18)的 3×3空洞卷积层和 1个全局平均池化层构

成的 5个并行分支组成，该模块能够对高级特征图通

过不同空洞率的空洞卷积操作进行细化，再通过 1×1
卷积压缩通道数，将获取到的高级特征图送入到解码

器模块。在 DeepLabV3+的解码器中，首先将 ASPP
模块输出的高级语义特征进行 4倍上采样，其次对主

干网络中间层的低级特征图使用 1×1卷积操作进行

通道降维。通过上采样和卷积操作的目的使输入的

2种特征图尺寸相同，接着使用 Concat操作将上采样

后的高级特征和低级特征图拼接合并，再经过一个

3×3卷积层进一步提取细化特征。最后，进行线性插

值上采样恢复到输入煤岩图像大小，输出使用不同颜

色标注的含有详细边界的煤岩识别图。
 
 

1×1: 1×1 卷积操作

1×1

1×1

1×13×3

3×3

3×3

Xception

3×3: 3×3 卷积操作

拼接操作

输入图像 特征提取 空间空洞金字塔操作 特征图生成 生成预测特征 输出预测图像

岩层

煤层
上采样

3×3

上采样

浅
层
特
征

高
级
特
征

图 2    DeepLabV3+模型检测框架

Fig.2    DeepLabV3+ model detection framework
 
 

1.2　图像特征提取原理

特征提取网络是语义分割模型中的关键，其特

征提取的准确性需要大量的计算资源。DeepLabV3+

中使用的特征提取网络是 Xception，但其规模超出

 

上采样下采样

解码区 编码区

图 1    编码器解码器网络结构

Fig.1    Encoder-decoder network structure
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了移动设备和嵌入式程序的能力，因此本文采用

MobileNetV2特征提取网络作为主干网络，该特征

提取网络在保持相同精度的同时显著的减少了参

数规模，提高了运行速度，能更好地应用在实际矿

井中。

MobileNetV2[20]由多个瓶颈层 (Bottleneck)构成，

每个瓶颈层都包括“扩张”“卷积”和“压缩”3个部分，

具体的瓶颈层结构如图 3所示。 
 
 

扩张卷积

56×56×144 56×56×144

深度可
分离卷积

压缩卷积

倒残差结构

输入特征
56×56×24

输出特征
56×56×24

图 3    MobileNetV2模型瓶颈层结构

Fig.3    MobileNetV2 model bottleneck layer structure
 
 

1.3　空洞空间卷积池化金字塔

ASPP是受 SPPNet中 SPP模块的启发，如图 4所

示，它指出在任意尺度的区域，可以用单个尺度图像

中重采样提取的卷积特征进行准确有效地分类。用

不同采样率的多个并行的空洞卷积提取特征，再将特

征融合，类似空间金字塔结构。前文指出空洞卷积可

以在增加感受野的同时保持计算量和参数量不变，配

合空间金字塔池化方案可以捕获多尺度的上下文信

息，从而提高分割结果的准确性。
 
 

卷积核: 3×3

空洞率: 6

rate=6
rate=12 rate=18 rate=24

卷积核: 3×3

空洞率: 12

卷积核: 3×3

空洞率: 18

卷积核: 3×3

空洞率: 24

输入特征图

空间空洞卷积池化金字塔

图 4    空间空洞卷积池化金字塔结构

Fig.4    Atrous spatial pyramid pooling structure
  

1.4　融合注意力机制的煤岩图像分割网络

SENet[21](Squeeze-and-Excitation  Networks)作为

通道域注意力机制的代表作，其核心思想是通过学习

的方式来自动获取到每个特征通道的权重，根据此权

重提升有用的特征并抑制对当前任务无意义的特征，

提高训练模型效果。Squeeze和 Excitation是 SE的 2

X̃

个关键操作，图 5为 SE模块示意。图 5中，X 为原始

输入特征图；H'、W'、C'为 X 的维度，分别为输入特征

图 X 的高度、宽度和通道数；U 为经过特征变换的特

征图；H、W、C 为 U 的维度，分别为经过特征变换的

特征图 U 的高度、宽度和通道数； 为输出特征图；

Ftr 为特征变换；Fsq 为特征压缩；Fex 为特征提取；Fscale

为特征缩放。通道注意力对于提升模型性能具有显

著效果，但通常会忽略位置信息，故引入空间位置注

意力机制 [22](Coordinate  Attention，CA)，将位置信息

嵌入到通道注意力机制中，充分利用浅层特征图

信息。
 
 

通道注意力机制

X X

Ftr Fscale(·,·)

Fex(·,W)

Fsq(·)

1×1×C 1×1×C

U

H H

W W

C C

H′

C′
W′

~

图 5    SE通道注意力机制框架

Fig.5    SE channel attention mechanism framework
 

X

CA接受中间特征 X=[x1,x2,…,xc]∈RC×H×W 作为输

入，输出与 X 大小相同的增强特征 Y=[y1,y2,…,yc]。即

CA基于“嵌入”和“生成”2个步骤来编码通道关系

和依赖关系。“嵌入”步骤是将全局池化划分为 2个

一维向量的编码。对于输入 ，使用池化核 (H,1)和
(1,W)分别沿水平方向和垂直方向对每个通道进行编

码，中间层特征的输出为
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1
W

∑
0⩽i<W

xc(h, i) (1)

zb
c(w) =

1
H

∑
0⩽ j<H

xc( j,w) (2)

za
c(h) zb

c(w)

xc(h, i)

xc( j,w)

式中，h 为中间层特征高度；w 为中间层特征宽度；c 为

通道数； 为垂直方向的输出；a 为垂直方向；

为水平方向的输出；b 为水平方向； 为高度为 h、
第 c 个通道的输入； 指宽度为 w、第 c 个通道

的输入。

CA生成将式 (2)和式 (3)的输出串联起来，使用

1×1卷积、批标准化和非线性函数激活进行特征转化，

f 的表达式为

f = δ(F1([za,zb])) (3)

式中，[-,-]为沿空间维度的连接操作；δ 为一个非线性

激活函数；F1 为 1×1卷积变换函数；f∈RC/r×(H+W) 为包

含水平方向和垂直方向的中间特征图；r 为缩减因子。

随后沿空间维度将 f 分成 2个独立的特征

f h∈RC/r×(H+W) 和 f w∈RC/r×(H+W)，使用 2个 1×1卷积和

sigmoid函数对以上 2个独立的特征转化成与输入 X
具有相同通道数的特征，得到的结果为

ga = σ (Fh ( f a)) (4)

gb = σ
(
Fw

(
f b

))
(5)

ga gb

f a f b

Fh

Fw

式中，σ 为 sigmoid函数，输出的 和 被扩展并分别

作为注意力权重； 为沿垂直方向的特征； 为沿水

平方向的特征； 为具有相同通道数 h 的 1×1卷积变

换函数； 为具有相同通道数 w 的 1×1卷积变换函数。

最后将式 (5)和式 (6)输出的 ga 和 gb 合并成权

重矩阵，CA模块的输出为

yc(i, j) = xc(i, j)×ga
c(i)×gb

c( j) (6)

yc(i, j) xc(i, j)
ga

c(i) gb
c( j)

式中，i 为 CA模块输出特征的高度；j 为 CA模块输出

特征的宽度； 为与输入特征 大小相同的增

强特征； 为沿垂直方向的注意力权重； 为沿

水平方向的注意力权重。 

1.5　去雾算法

暗通道先验去雾算法是根据已知的有雾图像求

解出透射率和全局大气光，暗通道是在 RGB三个通

道中取最小值组成的灰度图，再进行一次最小值滤波

所得。

雾图合成模型算法表达式为

I(x) = J(x)× t(x)+A[1− t(x)] (7)

式中，x 为图像中的像素位置，即空间坐标；I 为含雾图

像；J 为去雾图像；t 为大气的透射率；A 为大气光强度。

已知有雾图像 I，只要求出透射率 t 及大气光强

度 A，则可利用图像复原公式 (8)计算去雾图像 J：

J(x) =
I(x)−A

t(x)
+A (8)

若 t(x)趋向 0，则式 (8)无效，因此可以设置一个

阈值 tmin，当 t<tmin 时，令 t=tmin，则去雾图像的最终公

式为

J(x) =
I(x)−A

max (t(x), tmin )
+A (9)

式中，tmin 为一个很小的正常数，用于避免透射率过小

导致除法溢出，tmin 在本文中取 0.1，提高大颗粒度煤

尘降噪能力。

利用透射率 t(x)表示像素 x 处的雾浓度，透射率

与大气光之间的关系为

t(x) = 1−ω min
c∈{R,G,B}

(
min
y∈Ω(x)

(
Ic(y)
Ac

))
(10)

ω式中， 为控制去雾程度；c 为 R、G、B中的某一通道；

Ic(y)为图像在 y 通道 c 上的亮度值；Ac 为大气光在通

道 c 上的强度；Ω(x)为像素点 x 周围的区域。

透射率估计的核心思想是通过计算图像中每个

像素在不同通道上的亮度值与大气光之间的比值，可

以得到一个表示雾气影响程度的估计值。而 w 控制

透射率的平滑程度，影响去雾程度，先验条件下一般

取 0.95，但本文聚焦煤尘影响，远大于空气中的雾霾

效果，单一 w 指标无法满足掘进中的全尘环境，所以

本文根据煤尘质量浓度控制 w 的取值，区间设置为

[0.7, 0.9]，以满足实际工况的高浓度煤尘环境。

考虑到井下煤尘不同空气中的雾霾，故本文提出

对已有去雾算法进行改进，先将基于导向滤波的暗通

道先验算法求得的去雾图像拉伸，其次把拉伸后的图

像与进行自适应直方图均衡化得到的去雾图像进行

线性融合，最终得到本文的去雾图像。 

1.6　SE-CA-DeepLabV3+算法

在本文的研究中，所提出的语义分割模型是针对

掘进过程中煤岩精准辨识而设计，目的在于确定煤层

与岩层位置的分布情况，为掘进机自适应调节截割头

转速和悬臂摆动速度提供支撑。通过语义分割模型

对煤岩图像进行像素级识别，不仅完成煤岩的分类和

定位，还能生成具有详细边界的煤岩区域，将煤岩图

像中的煤层和岩层用不同的颜色区分开。使用传统

的 DeepLabV3+语义分割网络对煤岩图像进行识别，

没有对解码区中的浅层特征图信息充分利用，并且不

能对感兴趣区域进行侧重学习，往往存在煤岩边缘分
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割精度差、误分割、分割不连续和模型复杂度高的问

题，不能灵活高效地部署于实际场景中。

鉴于此，项目拟基于 DeepLabV3+网络模型，如

图 6所示，目的在于精准识别掘进过程中的煤岩截割

界面，采用轻量级网络 (MobileNetV2)作为特征提取

网络，提高特征提取能力，降低模型参数量，从而使模

型更好地兼顾分割精度和模型复杂度；将通道注意力

机制 (SE)和空间注意力机制 (CA)分别引入 Mobile-

NetV2和空间空洞卷积 (ASPP)模块，增强对重点煤

岩特征信息的训练，对浅层特征图中的低级表征信息

加权，充分利用浅层特征图中的细节信息；从而设计

出融合双注意力机制于 DeepLabV3+的煤岩识别模型，

使得煤岩区域边界更加清晰。煤岩识别模型将 Mobi-
leNetV2和 ASPP输出的浅层特征和高级特征拼接合

并，确保煤岩分割目标位置信息更精确，使得分割目

标边缘更加连续。
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图 6    优化的 DeepLabV3+网络结构

Fig.6    Improved DeepLabV3+ network architecture
 
 

2　掘进工作面下煤岩截割模拟实验
 

2.1　搭建掘进工作面煤岩识别实验平台

由于煤岩图像数据集受到数据采集、成像条件和

掘进工作面煤尘环境等因素的影响，不便于采集大量

的煤岩截割面图像。因此，笔者根据井下煤尘环境及

煤层赋存条件，搭建煤岩识别实验平台，在煤尘环境

下模拟掘进机截割后形成的煤岩截割面。实验平台

主要由采集设备、物理相似模拟实验台和模拟煤尘环

境装置组成，搭建的煤岩识别实验平台如图 7所示。

本实验分为搭建煤岩识别实验平台和采集煤岩

截割界面 2部分，其中搭建煤岩实验平台包括：依据

物理相似模拟方法实现煤岩截割面的制作，截割面自

下而上构建，将煤粉、水等材料均匀混合后铺入物理

相似模拟实验平台，继续将 200目 (5 080 mm)花岗岩

粉、水等材料均匀混合铺设至煤层上方，考虑到井下

实际环境受煤尘影响，为使模拟环境更具真实性，故

结合风机和粉煤灰模拟煤尘等外在条件，考虑水雾会

使井下环境中的煤尘降低[23]，而本文为更好地模拟井

下极限煤尘质量浓度下环境，重点探究非降尘环境下

煤岩识别精准性，故未考虑水雾环境对煤岩识别的影

响。在搭建每组煤岩截割面时，需保证所铺设煤层与

岩层的分界形态呈现随机变化的特征，从而获取不同

变化特征的煤岩图像，最终以符合煤层演变规律的方

式搭建长、宽、高分别为 1.5、0.1、0.9 m的模型，每组

煤岩截割面的高度为 0.3 m。为使模拟的煤岩体更具

真实性，故制作的材料组成、强度等与实际煤岩体力

学参数相差小。采集煤岩截割界面包括以下步骤，采

用 200 W金贝灯作为光源，并选用型号为 5F04的千眼

狼高速摄像机作为采集装置。首先利用物理相似模

拟实验平台搭建煤岩截割面，其次结合风机和粉煤灰

模拟煤尘等外在条件，然后利用高速摄像机从左往右

采集煤岩截割表面分布情况，最后建立煤岩图像数据集。 

2.2　煤岩数据集去雾处理

巷道掘进过程中煤岩识别受煤尘影响较大，高质

量浓度煤尘导致井下能见度低，严重制约智能煤岩识

别。本文在试验矿井掘进工作面使用煤尘测量仪测

得煤尘质量浓度达 300～400 mg/m3，根据文献[23-25]
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对采掘工作面煤尘质量浓度的测定，发现采掘工作面

附近呼吸煤尘质量浓度可达 50～150 mg/m3，全尘质

量浓度可以达到 300～600 mg/m3，为了更好地模拟恶

劣工况下煤岩识别精准度，试验中的煤尘质量浓度设

置为 300～450、450～600、600～750 mg/m3，在试验

过程中，通过风机加煤粉等来制造掘进时煤尘环境，

采用煤尘测量仪实时控制煤尘质量浓度，探究高质量

浓度煤尘对煤岩识别的影响。

在此环境下采集到的煤岩截割界面受到煤尘引

起浓雾影响模型检测效果，故利用去雾处理解决由于

煤尘引起浓雾的拍摄模糊影响，利用第 1.5节所提去

雾算法，主要目的是消除图像中由于煤尘颗粒等干扰导

致的能见度下降和图像失真的问题，可以更好地提高

模型的适用性。不同质量浓度下的煤尘制造过程如

图 8所示，利用煤尘质量浓度检测仪可以控制试验中模

拟的煤尘质量浓度在掘进工作面范围内，采用去雾处

理来提高图像质量和清晰度，使得识别效果更加准确。 

2.3　掘进工作面煤岩图像数据集标注

针对数据预处理后得到的数据集，使用开源软件

Labelme进行标记样本，将增强后的数据集转换成

JSON格式。考虑到在掘进过程中对煤岩图像识别的

首要任务是精确检测出煤层，所以除煤层外其余部分

均被指定为岩层，本文数据集包含煤层和岩层 2个种

类。数据集中的每个图像都具有相应的 JSON注释文

件，该文件为每个图像提供对象轮廓和对应分类标签。

最后将 JSON格式的数据集批量转换成分辨率为

516×516、深度为 8位的彩色图，其中每个像素点的值

为该像素点所属的种类。煤岩数据集的原始图像和

样本标签图像如图 9所示。制作完成后的煤岩图像

数据集共含有 2 584张图像，按照 8∶1∶1划分为训

练集、验证集和测试集。
 

2.4　煤岩图像识别方法及训练策略

笔者利用深度学习模型识别煤层和岩层的位置，

 

岩层

煤层

煤岩
分割

模型
训练 数据集标注 去雾处理

采集
图像

煤尘
制造

光源

摄像机

图 7    掘进工作面煤岩识别实验平台

Fig.7    Experimental platform for coal-rock identification in excavation working face

 

煤尘质量浓度检测仪

煤尘质量浓度控制

风机及粉煤灰

煤尘制造过程

去雾前图像

去雾后图像

图 8    实验室模拟煤尘环境

Fig.8    Laboratory simulation of coal dust environment
 

原始图像 去雾图像

岩层 岩层

煤岩分界 煤岩分界

煤层 煤层

样本标签图

图 9    预处理后的数据集及对应标签

Fig.9    Preprocessed data set and corresponding labels
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提出了基于 SE-CA-DeepLabV3+模型的掘进空间煤

岩截割界面感知与精准识别方法，整体流程可以分

为 3个阶段，煤岩截割界面自动识别的流程如图 10
所示。

 
 

掘进过程中煤岩截割界面自动识别方法研究
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制作数据集

引入通道和空
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采用迁移学习
思想训练模型
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搭建掘进机
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图 10    煤岩截割界面自动识别流程

Fig.10    Coal-rock cutting interface automatic identification process
 

首先，通过自主搭建的煤岩识别实验平台采集掘

进过程中煤岩截割面图像，并对煤岩图像数据集预处

理，包括对图像的去雾处理、标注以及训练集和验证

集的划分；其次，模型搭建的过程包括对原 Dee-
pLabV3+模型主干网络替换、融入多尺度注意力机制

等；最后，采用迁移学习的思想，在煤岩图像数据集上

对 SE-CA-DeepLabV3+模型进行训练，并对图像分割

结果进行对比分析，最终得出分割精度高、可灵活部

署的煤岩截割界面识别的最优模型。

训练采用迁移学习的思想，使用在 VOC数据集

上训练好的权重文件作为 SE-CA-DeepLabV3+模型的

预训练权重，训练分为冻结和解冻 2个阶段，设置冻结

阶段可以弥补机器性能不足的缺陷，设置总训练轮次为

100，冻结阶段训练轮次为 50。训练参数的设置见表 1。 

3　结果与分析
 

3.1　评价指标

为了从多角度评估 SE-CA-DeepLabV3+模型在煤

岩识别中的分割性能，笔者采用平均像素精度 (MPA)、
平均交并比 (MIoU)、参数量 (Parameters)和每秒检测

帧数 (FPS)作为评价指标。MPA和 MIoU评估模型

的整体准确性和分割精度，模型的参数量和 FPS是衡

量其复杂程度和检测效率的重要指标，表现为 MPA
和 MIoU的值越大，识别结果越精确；FPS越高，视觉

效果就会越流畅和清晰；参数量越小则生成的权重文

件越小，能便携地部署到嵌入式设备中，以更好地应

用实际矿井中。

(1) MPA是每一类正确分类的像素数量占总像素

数量的比值后的平均值，计算方法为

 

表 1    实验参数设置

Table 1    Experimental parameter settings

参数 数值

Downsample Factor 16

Optimizer SGD

Batch Size
Freeze：4

UnFreeze：4

Learning Rate Decay cos

Init Learning Rate 0.007

End Learning Rate 0.000 07
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MPA =
1

k+1

k∑
m=0

pmm

k∑
m=0

pmn

(11)

(2) MIoU是每一类预测值和真实值的交集与并

集的比值，求和再平均的结果，计算方法如下：

MIoU =
1

k+1

k∑
m=0

pmm

k∑
n=0

pmn+

k∑
n=0

pnm− pmm

(12)

式中，k 为标签的类别数 (煤层，岩层)；k+1为包含背景

的类别数；m 为真实值；n 为预测值；pmm 为实际为 m
类预测为 m 类的像素数量；pmn 为实际为 m 类预测为

n 类的像素数量；pnm 为实际为 n 类预测为 m 类的像

素数量。 

3.2　不同煤尘质量浓度实验对比

为了系统研究不同煤尘质量浓度对煤岩识别精

度的影响，利用煤尘测量仪控制煤尘质量浓度，区间

分别设置为 300～450、450～600、600～750 mg/m3，

探究 3种不同煤尘质量浓度下的煤岩图像去雾效果，

具体结果见表 2。

表 2结果表明，3种不同煤尘质量浓度下的去雾

后图像识别准确率均高于去雾前图像识别准确率。

当煤尘质量浓度达到 450～600 mg/m3 时，去雾前图像

识别准确率仅有 63.72%，煤层区域像素点误差达到

16.85%，而去雾后图像识别准确率提高了 35.72%，且

煤层区域像素点误差仅有 0.26%，试验结果证明去雾

处理能显著提高识别准确率。对比分析不同质量浓

度下去雾效果，发现煤尘质量浓度越低，去雾效果越

显著，可得出高质量浓度掘进工作面环境会影响煤岩

识别效果，需要通过去雾处理消除煤尘颗粒诱导的图

像能见度下降和失真问题。图 11为不同煤尘质量浓

度下的去雾图像对比。
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图 11    不同煤尘质量浓度下的去雾图像对比

Fig.11    Comparison of defogging images under different coal dust concentrations
 
 

3.3　SE-CA-DeepLabV3+模型分割性能对比

将训练好的模型加载到改进网络，对测试集中的

图像进行识别。为了直观地对比 DeepLabV3+模型改

进前后的分割性能，随机对测试集中的 4组煤岩图像

进行可视化对比分析，如图 12所示。

由图 12可知，Xception在本文煤岩图像上识别效

果最差，存在大量的漏分割，且分割精度较低，Mobile-
NetV2存在少量错分割现象且对煤岩边界分割较粗糙，

U-Net模型对煤岩的分割精度较高，边缘分割较平滑，

但也存在少量的边缘分割不准确现象。改进前的

DeepLabV3+模型在解码器部分将高层特征和低层特

征简单的进行拼接融合，由于煤层和岩层边界特征复

杂，存在大量噪声，没有充分利用浅层特征图信息，导

致分割性能下降。改进后的网络利用通道注意力机

制突出分割任务中有用的特征，对于煤岩边缘分割更

加连续，识别效果与真实标签图相似度极高。 

 

表 2    不同浓度下煤尘图像识别结果对比

Table 2    Comparison of coal dust image recognition results
under different concentrations

煤尘质量浓度/

(mg·m−3)

去雾前图像 去雾后图像

准确率/% 像素点误差/% 准确率/% 像素点误差/%

600～750 66.21 15.69 81.59 8.55

450～600 63.72 16.85 99.44 0.26

300～450 86.74 6.16 95.18 2.24
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3.4　训练结果与分析

本文 SE-CA-DeepLabV3+模型在煤岩图像数据集

上训练的损失值曲线如图 13所示。
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图 13    SE-CA-DeepLabV3+模型的训练损失曲线

Fig.13    Training loss curves of SE-CA-DeepLabV3+
 

由图 13可知，训练集和验证集的损失函数都随

训练轮次的增加而逐渐趋于稳定。在第 1个训练轮

次结束后将学习率调整到比初始学习率更小的值，以

保证模型具有良好的收敛性。模型训练过程包含冻

结阶段和解冻阶段，冻结阶段训练轮次为 50，由于冻

结阶段结束，学习率调整，导致损失曲线先上升后下

降，模型脱离局部最优，开始向全局最优收敛，说明所

提出的算法可有效降低特征信息的损失，达到提高识

别效果的目的。随着训练轮次的增多，损失曲线缓慢

降低并趋于稳定，曲线变化趋势良好。在训练轮次达

到 90时，验证集损失不改变，模型基本收敛，最终训

练集和验证集的损失相差 0.016，表明 SE-CA-Dee-

pLabV3+模型在煤岩数据集上收敛效果较好。

基于本文提出的 SE-CA-DeepLabV3+模型与原

始 DeepLabV3+模型进行对比，训练得到的 MIoU曲

线如图 14所示。
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图 14    未改进和改进后 DeepLabV3+的MIoU

Fig.14    MIoU of unimproved and improved DeepLabV3+
 

由图 14可知，训练初始迭代时，原始模型的 MI-
oU约为 78.84%，改进后模型的 MIoU约为 76.98%，

但改进模型在训练轮次为 5～10次后，MIoU明显高

于原始模型，并且改进后模型迅速收敛，说明经过训

练后获得了可靠且有效的模型。在训练轮次为 100
时，2种模型的训练 MIoU分别为 95.27%、97.15%。

综合考虑模型的训练轮次、模型准确率以及模型大小，

明显发现改进后的模型检测性能更优。

将 MobileNet主干网络和注意力机制融入原始

DeepLabV3+网络后，3种不同网络对比训练得到的

MIoU曲线如图 15所示。
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图 12    识别效果对比

Fig.12    Identification effect
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由图 15可知，融入 2种注意力机制后，模型的

MIoU提升速度更快，说明融入注意力机制可以大幅

提升网络收敛速度，并一定程度提升精度。最终 3种

模型的 MIoU分别为 97.15%、96.42%、94.50%。单独

添加 SE模块的 MIoU提高了 1.92%，而融合 2个注

意力模块的方法 MIoU提高了 2.65%，这表明同时添

加 2个模块优于单独添加一个模块。由此可知，同时

做 3项改进的模型效果更优，不仅大幅提升模型收敛

速度，同时也明显提升精度。

为直观显示加入注意力机制后的效果，对输出结

果进行可视化，图 16所示为增加注意力机制前后的

热力图结果对比，颜色越偏近暖色表示越关注，图 16
中红色区域为显著度最高的区域，是模型做出决策的

主要依据区域，可以看出，单独融入 SE或 CA注意力

机制，模型对煤岩边界的关注度没有添加 2个注意力

机制高，同时对岩层区域存在一些误关注，笔者使用

的 SE-CA注意力机制激活了更多目标区域，并且对煤

岩分界区域的关注更加聚焦。

综上，所提算法在原 DeepLabV3+的基础上，对主

干网络和 ASPP模块进行优化，并融入注意力机制，使

模型充分利用浅层特征图信息。通过在模拟的煤岩

图像数据集上进行训练，最终证明，改进后的模型在

煤岩分割方面的表现优于原始模型。 

3.5　SE-CA-DeepLabV3+模型测试结果分析

本文模型主要是在原 DeepLabV3+的基础上，对

主干网络和 ASPP模块部分进行优化，并在解码区引

入注意力机制，对主干网络中间层输出的浅层特征信

息进行加权，充分利用低层特征图中的细节信息，确

保煤岩分割边界信息更精确。通过在煤岩图像数据

集上进行不同主干网络、不同 ASPP模块优化策略以

及不同模型的对比，来验证本模型的高效性。 

3.5.1　不同主干网络的效果对比

在语义分割任务中，主干网络的作用是提取网络

特征，它是语义分割模型中的关键，而提高分割结果

的准确性需要大量的计算资源，因此考虑对原始 Dee-
pLabV3+模型的主干网络进行更换。在煤岩图像数

据集上一共进行了 4组对比试验，分别测试了 Xcep-
tion[26]、ResNet101、DRN、MobileNetV2等主干网络

基于改进后 DeepLabV3+模型的性能，用 MIoU、参数

量和推理时间 (tSPP)作为不同主干网络的评价指标，

其中，tSPP 为识别单张图片的时间，结果见表 3。
 
 

表 3    基于不同主干网络的性能对比

Table 3    Comparison of performance based on different
backbone networks

主干网络 平均交并比/% 参数量/106 tSPP/ms

Xception 95.27 54.71 172.40

ResNet101 96.35 55.65 212.35

DRN 96.43 40.08 185.31

MobileNetV2 94.50 5.81 49.20
 

由表 3可见，将主干网络替换为 MobileNetV2后，

MIoU为 94.50%，参数量为 5.81×106。虽然主干网络

为 DRN时 MIoU更高，但参数量是 MobileNetV2的

近 8倍。同样，尽管 Xception和 ResNet101主干网络

的精度更高，但参数量远大于 MobileNetV2。同时

MobileNetV2主干网络 tSPP 仅为 49.20 ms，相比其他

主干网络用时更短。经过综合分析，MobileNetV2作

为模型的主干网络，能保持相近精度的同时显著地减

少了参数规模和提高了运行速度，对于部署到实际工
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图 15    引入注意力机制后模型的MIoU

Fig.15    MIoU of models after introducing attention mechanism

 

( a ) 原图 ( b ) SE

( c ) CA ( d ) SE-CA

图 16    注意力机制热力示意

Fig.16    Attention mechanism heat map
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况更具有优势。 

3.5.2　改进 ASPP模块效果对比

第 1.1节指出，ASPP模块是接收主干网络输出的

高级语义特征，通过不同空洞率的空洞卷积对高级特

征进行细化，目的是为了提取丰富的上下文语义信息

和多尺度特征，所以本文在对 ASPP模块改进中，提

出 3种方案：第 1种是引入条纹池化模块 [27](Strip
Pool)，替换传统的全局平均池化模块；第 2种是引入

通道注意力机制 SE模块，将 ASPP模块输出的高级

特征进行通道注意力操作，第 3种联合使用条纹池化

模块和通道注意力模块，因此基于 MobileNetV2主干

网络进行 3组方案对比，用 MIoU、准确率和 tSPP 作为

不同改进方案的评价指标，结果见表 4。
由表 4可知，联合使用条纹池化模块和通道注意

力模块，模型的 MIoU、准确度均比使用单一模块低。

分组 2表明，单独使用通道注意力机制不仅可以提高

模型的识别效果，并且 tSPP 也有一定提升。综合考虑

后选择分组 2对 ASPP模块进行改进。 

3.5.3　不同模型之间的对比实验

为了进一步验证本文模型优异的分割效果，选取

预处理后的煤岩图像数据集进行不同模型的数据训

练 ，将本文提出的模型与 PSPNet、HRNet、U-Net、
DeepLabV3+等经典语义分割模型进行对比分析，具

体结果见表 5。
 
 

表 5    不同模型在煤岩图像数据集上的性能对比

Table 5    Performance comparison of different models on coal-rock image datasets

算法 主干网络 MIoU/% MPA/% 准确率/% 参数量/106 tSPP/ms 模型大小/106 FPS

PSPNet MobileNetV2 92.24 95.62 97.03 2.38 39.05 9.07 25.61

HRNet HRNetv2 93.06 96.44 97.34 29.55 73.26 37.50 13.65

U-Net VGG 94.54 97.34 97.92 24.89 292.53 94.95 3.42

DeepLabV3+ Xception 95.27 97.71 98.21 54.71 172.40 208.70 5.80

DeepLabV3+ MobileNetV2 94.50 97.09 97.69 5.81 49.20 22.18 20.33

SE-CA-DeepLabV3+ MobileNetV2 97.15 98.51 98.94 6.02 50.01 22.96 43.59
 

由表 5可知，在MIoU方面，原 DeepLabV3+和 U-
Net识别效果相差不大 ，而本文所提 SE-CA-Dee-
pLabV3+模型 MIoU最高，达到 97.15%；同时 MPA和

准确度在各模型中最高；尽管 PSPNet在模型参数量

方面较本文算法优势明显，但本文算法仅仅以损失参

数量为代价，MIoU提高了 4.91%。综合分析可得出，

相较于其他的经典语义分割模型，本文提出的模型取

得了更优异的识别效果，不仅在精度方面比原 Dee-
pLabV3+提升了 1.88%，重要的是模型大小和参数量

降低了 89%，推理速度提高了 71%，同时 FPS提高了

8倍，因而能更好地满足实际矿井。

通过对不同模型在相同数据集下进行比较，只能

表明本文模型在传统意义上的改进优化效果，但是并

不能表明该模型具有泛化能力，因此本文选取文

献[28]基于改进 U-Net模型的煤岩识别进行纵向对比，

选取 MIoU作为综合评价指标来进行对比分析，发现

主干网络使用特征能力更强的 Res2Net的 U-Net煤
岩图像分割模型 MIoU为 91.13%，而本文模型达到

97.15%。 

4　工程应用

为了验证本文提出的煤岩截割界面精准识别方

法在实际应用中的有效性，采用实测图像进行识别。

基于本文所建立模型对来自陕北试验矿井掘进工作

面的原始煤岩图像进行识别，实测图像受高浓度煤尘、

煤岩分界形态复杂等多环境因素的影响，本文煤岩界

面图像数据在掘进机驾驶舱位置处通过防爆摄像机

采集，所选取的掘进工作面煤尘质量浓度达 300～
400 mg/m3，原始煤岩图像如图 17所示。

同时验证此算法是否可以作为掘进机判别煤层

 

表 4    ASPP 改进实验对比结果

Table 4    ASPP improvement experiment comparison results

分组 Strip Pool SE MIoU/% 准确率/% tSPP/ms

1 √ 96.17 97.94 53.75

2 √ 96.42 98.67 49.95

3 √ √ 96.11 97.92 54.65

 

煤层 煤层

岩层 岩层

图 17    掘进工作面原始煤岩图像

Fig.17    Raw coal-rock images of the excavation face
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和岩层位置信息的基准，对井下现场采集到的煤岩图

像进行裁剪处理，随机获取 10张图像进行图像分割，

测试结果见表 6。取 4张具有不同岩性、不同纹理、

不同光泽的井下煤岩图像使用 SE-CA-DeepLabV3+模
型进行识别，识别结果如图 18所示。
  

表 6    煤岩图像测试数据

Table 6    Coal-rock image test data

样本编号
煤尘质量浓度/

(mg·m−3)
tSPP/ms

FPS/

(帧·s−1)
像素点误差/%

1 330～335 23.03 43.42 0.06

2 350～352 24.04 41.60 0.45

3 345～350 22.78 43.90 0.17

4 385～389 23.35 42.83 3.28

5 353～355 23.38 42.78 0.33

6 361～363 22.92 43.63 0.21

7 395～398 23.50 42.56 1.98

8 345～353 23.44 42.67 0.14

9 335～339 23.31 42.90 0.01

10 350～355 22.89 43.69 0.40

平均值 23.26 43.00 0.70
 

  

分割边界平滑

分割精度高

相似度高

分割边缘连续

原始图像 去雾图像 预测图像

图 18    煤矿掘进工作面煤岩图像分割结果

Fig.18    Segmentation results of coal rock image in coal mine ex-

cavation face
 

从图 18可以看出，通过去雾处理的井下煤岩图

像经本文模型识别后，煤岩分割精度高、边缘分割平

滑，跟原始图像对比相似度极高。为了更好地证明本

文算法能够满足实际矿井的需求，进一步地统计原始

图像和预测图像煤层和岩层的像素点数目，通过像素

点误差分析证明本文模型分割精度高。图 19为像素

点误差示意。
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图 19    预测煤层占比与实际煤层占比及误差

Fig.19    Error map of the predicted coal seam proportion and the

actual coal seam proportion
 

由表 6和图 19可知，随机获取的煤岩图像进行

识别后平均误差为 0.7%，每个煤岩图像样本的误差不

超过 4%，很好地反映了本文所提出的煤岩图像识别

算法在实际应用中优异的分割性能。同时，用 tSPP 和
FPS作为评价指标对随机选取的煤岩图像进行测试，

可以发现单张煤岩图像 tSPP 平均用时为 23.26  ms，
FPS为 43 fps。

综上，可得出基于本文方法建立并优化后的巷道

掘进过程中的煤岩截割界面精准识别方法，分割算法

准确、分割精度高，可灵活高效地部署到实际矿井中，

拓展了智能掘进技术，对推动煤矿智能化建设及煤炭

能源行业现代化发展具有重要意义。 

5　结　　论

(1)提出了一种基于 SE-CA-DeepLabV3+模型的

模型，用于感知和精准识别掘进工作面的煤岩截割界

面，将 DeepLabV3+原主干网络 Xception替换为 Mo-
bileNetV2网络；对空洞空间卷积池化金字塔模块输出

的高级特征进行通道注意力 (SE)操作，分配通道权重

以强化对重点特征信息的训练；在主干网络输出的浅

层特征添加通道空间注意力 (CA)机制，对浅层特征

图中的低级表征信息加权。

(2)搭建了一种在煤尘环境下模拟掘进工作面煤

岩识别实验平台，研发了用于采集巷道掘进过程中煤

岩截割界面的方法，针对掘进工作面高质量浓度煤尘

环境特征，提出去雾处理方法，增加模型可靠性。

(3)在煤岩图像数据集上进行了相关对比分析，结

果表明，SE-CA-DeepLabV3+模型的 MIoU和 MPA分

别为 97.15% 和 98.51%，模型大小为 22.96×106，相较
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于其他模型，分割性能更优，部署到实际矿井更具有

优势。

(4)采用本文提出的方法对现场掘进工作面的原

始煤岩图像进行识别，对随机选取的煤岩图像识别平

均误差为 0.7%，取得了精确的识别结果。每秒传输帧

数为 43 fps，验证了方法的实用性，可有效应用于掘进

工作面掘进机自适应截割作业，有助于推进矿山智能

化建设的实现。
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