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Coal-rock interface perception and accurate recognition in heading face under coal
dust environment based on machine vision
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YANG Yanbin', HE Wei'

(1. College of Energy Engineering, Xi’an University of Science & Technology, Xi'an 710054, China; 2. State Key Laboratory of Coal Resources and Safe
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Abstract: The coal-rock identification technology in the roadway excavation process is the core of the automatic adjust-
ment of roadheader’s cutting head, and it is also one of the key problems restricting the development of intelligent mines.

In view of the current mining imbalance, the excavation face lacks a mature and effective coal-rock identification scheme,
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and the existing image based coal-rock identification models have problems such as poor segmentation accuracy and inab-
ility to flexibly deploy, a coal-rock cutting interface perception and precise recognition method based on image segmenta-
tion is proposed in the heading face. This method combines the actual cutting situation of the excavation working face and
uses the MobileNetV2 feature extraction network as the backbone network of DeepLabV3+, so that the model can better
balance the segmentation accuracy and model complexity. The channel attention (SE) operation is performed on the ad-
vanced features output by the Atrous Spatial Pyramid Pooling module, and channel weights are assigned to strengthen the
training of key feature information. The channel spatial attention (CA) mechanism is introduced into the shallow features
output by the backbone network to weight the low-level representation information in the shallow feature map, thus
designing a coal-rock cutting interface identification model that integrates the double attention mechanism in
DeepLabV3+. At the same time, an experimental platform for coal-rock identification in a dusty environment is built to
simulate the coal and rock cutting surface formed by the roadheader after cutting, and the coal-rock cutting interface ac-
quisition system in the process of roadway excavation is developed. Taking the actual mine excavating face as the engin-
eering background, the recognition accuracy and practical applicability of the coal-rock identification model are verified.
The research results show that the average intersection ratio and average pixel accuracy of the SE-CA-DeepLabV3+ net-
work model are 97.15% and 98.51%, respectively, which have better segmentation performance than other network mod-
els. The established model is used to verify the original coal and rock images from the heading face of the experimental
mine in northern Shaanxi, the average error is 0.7%, and the number of transmission frames per second is 43fps, which

meets the deployment conditions of downhole field applications.
Key words: coal-rock cutting interface; SE-CA-DeepLabV3+; roadway excavation; coal-rock identification platform;
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Fig.7 Experimental platform for coal-rock identification in excavation working face
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Fig.10 Coal-rock cutting interface automatic identification process
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Table 1 Experimental parameter settings

2R KifE
Downsample Factor 16
Optimizer SGD
Freeze: 4
Batch Size
UnFreeze: 4
Learning Rate Decay cos
Init Learning Rate 0.007
End Learning Rate 0.000 07

Wik (FPS) 1E M IEM 5 HR . MPA Al MIoU PF-A 4 71
V1R A YR PR R 43 BRSBTS 400 N FPS SR Ay
T HAT A AR P RS IR () E B AR A, R BN MPA
1 MIoU (1K, PR 50145 S0k i ; FPS s, W05
SR S S B RIS WA 5 S 50 /N D) A o 4 A S
PRGN, R 485 Hb 8 2 i A SR8 b, DL G
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Table 2 Comparison of coal dust image recognition results

under different concentrations

Mo i FE/ HERER e Al
(mg*m”) R RERIRE% W% AR/ %
600~750 66.21 15.69 81.59 8.55
450~600 63.72 16.85 99.44 0.26
300~450 86.74 6.16 95.18 2.24

P2 BERAEW, 3 PRI A IR T A5
Je BRI HEBR 235 85 1 2 55w BB UM ME 5
RN VR B TR F] 450~600 mg/m’ I, 55 R EIE
PUNHER RAUA 63.72%, M2 XI5 & iR 2253
16.85%, i %% Ja MG ARG R4 = T 35.72%, H.
2 X IAR 2 AR E A 0.26%, IR 45 BRI £ %
A B AE G 25 B RO E R R . X LA HTAS [R5 R vk
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Comparison of defogging images under different coal dust concentrations
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Fig.16 Attention mechanism heat map
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Table3 Comparison of performance based on different

backbone networks

FT % SFEZETE L% ZHit/10° fspp/ms
Xception 95.27 5471 172.40
ResNet101 96.35 55.65 212.35
DRN 96.43 40.08 185.31
MobileNetV2 94.50 5.81 49.20

FH R 3 AT L, H 3 T M 288545 MobileNetV2 J&,
MIoU K 94.50%, Z %kt 5.81x10° HIR F T M4
;7 DRN B MloU ¥ &, {H Z %k & /& MobileNetV2 [
T 8 4%, [AIKE, R4S Xception 1 ResNet101 3= T [ 4%
(1) 4% B2 O 5, {H 2 80 8 KT MobileNetV2, [F] if
MobileNetV2 3= T 4% tgpp XK 49.20 ms, AH L H A
FTMZ AR . 233256501, MobileNetV2 {f
AR F2 T 45, BECRAFRR DA B2 A% ] i 48 5 bk
T SERBCREE R T B T, X T B SR T
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O3B S 5 1 RPN S 80 fh A B B Strip
Pool), B4 AL Gi i) 42 Jai F- B AL A H; 565 2 FpJE 5 A
WA IALE] SE Bk, B ASPP A HLg 1Y 5 9
REOEEA T8 18 1 B4R, 5 3 IR A H Ak 8rith Ak
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WL IEAT 3 405 Xt L, H MIoU | VERRFN tgpp 1N
IR RPN R R, 45 WL 4.
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Table 4 ASPP improvement experiment comparison results

Gaxiil Strip Pool SE MIoU/% WEHIR % tgpp/ms
1 V 96.17 97.94 53.75
2 v 96.42 98.67 49.95
3 y \ 96.11 97.92 54.65

G342 FH, PR A T R AL AN AT DA
BRI PURIRCR, IF B topp WA —E T, Li5FIE
JE e 2 %) ASPP BEH R TRCE
3.5.3  AN[EIAEEAL 2 (Rl X6 L SE 5

R T W25 R AR SO R 53 (14 70 RO, BEHR
Tk 3 2 GBS A R AT AN [RS8 A 5l |
Yk, B A SCHR B B AL 5 PSPNet, HRNet, U-Net,
DeepLabV3+55 28 ML S A3 EI IR 9E 17 % L4347, B
IREEIR LR 5.

x5 AEEBEREEGEES LaIEREXTLL

Table S Performance comparison of different models on coal-rock image datasets

RS FF M4 MIoU/% MPA/% HETIR/% 2100 tspp/ms KT K /N 10° FPS
PSPNet MobileNetV2 92.24 95.62 97.03 2.38 39.05 9.07 25.61
HRNet HRNetv2 93.06 96.44 97.34 29.55 73.26 37.50 13.65
U-Net VGG 94.54 97.34 97.92 24.89 292.53 94.95 342

DeepLabV3+ Xception 95.27 97.71 98.21 54.71 172.40 208.70 5.80
DeepLabV3+ MobileNetV2 94.50 97.09 97.69 5.81 49.20 22.18 20.33
SE-CA-DeepLabV3+ MobileNetV2 97.15 98.51 98.94 6.02 50.01 22.96 43.59

H1 %% 5 W1, 78 MloU Jiifl, Ji£ DeepLabV 3+l U-
Net PR 71 %0 R A0 25 4 K, i 4 3C fir $& SE-CA-Dee-
pLabV3+5i MloU #x , i5 3] 97.15%; [FIA MPA Fil
TEAf B2 7R 25 B d s S8 PSPNet 7EAR AU S 40 it
J7 AR SCRRLR LA i, (A SCREAU AR R =
B MU, MIoU 4218 T 4.91%. 2583l 151,
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Fig.17 Raw coal-rock images of the excavation face
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Table 6 Coal-rock image test data

S fo VR FPS/

FEA G (mg - 1) tspp/ms Wi s PBER MR %
1 330~335 23.03 43.42 0.06
2 350~352 24.04 41.60 0.45
3 345~350 2278 43.90 0.17
4 385~389 2335 42.83 3.28
5 353~355 23.38 4278 0.33
6 361~363 2292 43.63 0.21
7 395~398 23.50 42.56 1.98
8 345~353 23.44 42.67 0.14
9 335~339 2331 42.90 0.01
10 350~355 22.89 43.69 0.40
FHE 23.26 43.00 0.70

K18 i AR PR A

Fig.18 Segmentation results of coal rock image in coal mine ex-

cavation face
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Fig.19 Error map of the predicted coal seam proportion and the

actual coal seam proportion
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