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Abstract: The exploitation of coal resources will destroy the aquifer structure, disturb the groundwater system and pro-
duce a new water cycle model. As the focus of coal supply and production, the western mining area is short of water re-
sources and fragile in ecology. High-intensity and large-scale mining aggravates this disturbance and makes the hydro-
chemical process such as water-rock interaction more intense. The coal mining-motivated effect of groundwater system
hydrochemistry behind it is a key scientific problem related to the prediction accuracy of coal mine safety mining and the
protection of groundwater environment in green mining. In view of this, taking the Caojiatan coal mine in western Yushen
mining area as an example, using the principles and methods of hydrogeochemistry, from the perspective of ‘what it is’,
‘why it is” and ‘how it changes’, the results of mining-motivated effect, the process of mining-motivated effect, and the
evolution trend of hydrochemistry are systematically studied. The results show that the groundwater in the study area can
be divided into five clusters. Cluster I represents the shallow groundwater dominated by Quaternary and weathered bed-
rock aquifers in the west wing of the mine field after coal mining. Cluster Il represents the mixing of groundwater before
and after mining. Cluster Il represents the groundwater before mining. Cluster IV and Cluster V mainly represent the
groundwater of Yan’an Formation after mining. After coal mining, the proportion of HCO;—Ca and HCO;—Mg in the
groundwater samples of the fourth and fifth sections of Zhiluo Formation and Yan’an Formation increased, the shallow
groundwater quality after mining in the west wing of the mine field was the best as a whole, and the water quality of each
aquifer has a tendency to evolve well and is not sensitive to the response of coal mining. The groundwater in the study area
is controlled by the ion exchange, and the groundwater in the fourth and above aquifers of Yan’an Formation before coal
mining is controlled by the dissolution of carbonate and silicate rocks. The shallow groundwater in the west wing of the
mine field after coal mining is controlled by the dissolution of carbonate rocks. The groundwater in the aquifers of the
Zhiluo Formation and the fourth and fifth sections of the Yan’an Formation is mainly controlled by the dissolution of silic-
ate rocks and the oxidation of FeS,. The groundwater in the aquifers of the third and lower sections of the Yan’an Forma-
tion is mainly controlled by the dissolution of evaporated salt. Coal mining accelerates the circulation speed of groundwa-
ter and the hydraulic connection between aquifers. The resulting dilution effect and the discharge measures after mine wa-
ter treatment are the reasons for the hydrochemical characteristics and water quality evolution of the aquifers in the fourth
section of Yan'an Formation and above. In the future, we should continue to do a good job in the discharge of mine water
after treatment, and pay attention to the trend of groundwater characteristics in the fifth section of Zhiluo Formation and
Yan’an Formation evolving to shallow groundwater, so as to avoid misjudgment of the results of water inrush sources.
Key words: groundwater hydrochemistry; self-organizing maps (SOM); entropy-weighted water quality index (EWQI);
complex groundwater system in mines; Yushen mining area; Jurassic coalfield
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Fig.1 Schematic diagram of sampling location and geological strata
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Table1 Sampling time, clustering results, hydrochemical types, and water quality grades information

RE s B BURERE kbR pwqQl % || BE O mY B BEEARMH KEFER EwQl F%
Q7 2020467H  HCOy-Ca 1131 | A7 202048/ HCOyNa 1636 |
Q8 20204F8H  HCOyCa 912 | A9 2020478 HCOyNa 1458 1
Q9 202147 HCOs-Ca 1054 1 Al6 2012454 HCO3Na 2775 I
Q10 2021474 HCO;-Ca 849 1 A28 za 20224£3/]  HCO3-Na 1695 I
Q13 20224F1H  HCO;-Ca 1235 | A29 20224F3H4  HCO;-Mg 1392 1
Ql4 20224F1H  HCO3;Ca  10.68 I A31 20224F8H  HCO;-Mg 1278 1
Q15 20224F1/]  HCOy-Ca 1178 1 w7 2020471 HCOyNa 2135 1
Q16 20224F1H  HCO;Ca 9.87 I T8 20204F8H  HCO;-Na 1531 1
Q21 Q 20224F2f1  HCO;-Ca 1129 1 z17 Iz 2022458H  HCOy-Mg 1199 1
Q23 202243 HCO;-Ca 914 1 18 20224781 HCOyNa 1619 1
Q24 20224F3  HCO;-Ca 793 1 Z19 2022F8/]  HCOz-Ca 1676 1
Q25 20224E3H  HCOyCa 1141 1 YI J»' 2018%44H  HCOyNa 2067 |
Q26 20224631 HCOy-Ca 1102 | vs  J»' 201245/ HCO;Na 1971 |
Q27 20224F3/]  HCOs-Ca 862 | yiz It 202248 Cl-Na 4073 1
Q28 20224F8H  HCO3;Ca 1535 I Q19 20184F6H  HCOyNa 2408 |
Q29 2022458  HCOyCa 1247 1 Q20 Q 20184565  HCOy-Mg 1436 |1

BHE1 A6 20204E8H  HCO;Na  15.4] I A4 20184F4 A HCO5—Ca 15.08 I
A8 2020468  HCOy-Ca 1357 1 A5 20184F4J]  HCO3Na 2139 |
A10 20214F7H  HCO;Ca  15.49 I A19 20184F6H  HCO;-Mg 14.43 I
All 20214E8H  HCO3;Ca  16.05 I A20 haa 20184E12H  HCO;-Mg 19.07 I
Ald 20224F11  HCO;-Ca 1362 1 A21 2018456 HCOy-Mg 1567 1
Al5 2022418 HCOy-Mg 1268 T || A22 2018%F12/]  HCO;Na 1819 I
A23 ha 20224F3H4  HCO;Ca  14.78 I 72 2018437 HCO;-Na 2792 1
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A25 20224F3H  HCO;Ca 1038 | ) Z4 201844/  HCO3;-Na 12.85 I
A26 20224F3H  HCO;Ca 1472 I z5 20184F4H HCO3;-Na 13.94 I
A27 20224F3/1  HCO;-Ca 1344 1 79 Iz 20124F6/7  HCO;Na 2430 1
A32 2022435 HCO;-Mg  12.93 I Z11 20184F12H Cl-Na 4232
z6 20204F9F  HCO3-Ca 1212 1 Z12 2018%E6/]  HCO3-Na 2522 1[I

Iz
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MO7 —_— 20224F4H  HCO;Na  47.65 I Y2 Iy 20184F5H HCO;-Na 64.60 I
M09 20214E7H  HCO;Na  29.97 I Y7 20124F6 A HCO;-Na 5731
Q2 2018%F34  HCO;-Ca 1029 | Y9 It 2012455 Cl-Na 8o I
Q3 2018%F34  HCO;-Ca 1292 | Z1 Iz 201843 HCO;Na 2169 I
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Neural network diagram of hydrochemical indicators and cluster diagram of water samples
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