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Establishment of intelligent shearer bus electromagnetic interference model and
wiring process optimization

WEI Dong', WANG Zhongbin', ZHAO Yihui’, LI Fenglin', ZHAO Youjun?, SI Lei', LI Futao'

(1.School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China; 2.Xi’an Coal Mine Machinery Company, Xi-
an 710200, China)

Abstract: Intelligent shearer is a key equipment for a fully mechanized coal mine working face. For intelligent shearers,
due to the internal space limitation of flameproof electric control box, there are usually mixed wiring situations with the
cables of internal electronic and electrical components, inverter power, communication bus, etc., which seriously affects
the stability and reliability of shearer bus by electromagnetic interference. As the installed power continues to increase and
the shearer's intelligent demand becomes higher, the electromagnetic interference of the intelligent shearer's electronic and
electrical control system bus becomes more severe. At present, the wiring process in the shearer’s electrical control box is
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mainly based on experience. There are still no effective estimation means for the electromagnetic environment and the re-
search is limited on the coupling model of line field transmission in the shearer’s electrical control box, causing that it can-
not provide technical support for improving the bus anti-interference ability of intelligent shearer control system. There-
fore, to inhibit electromagnetic interference effectively and optimize the wiring process for improving the stability of bus
communication has become an important problem to be solved urgently for intelligent shearer. According to the require-
ments of anti-interference technology of intelligent shearer bus, the radiation interference model of the power cable in the
control box of intelligent shearer is established, and the rapid estimation method of the output-power-cable electromagnet-
ic radiation is proposed. Furthermore, the electromagnetic radiation of the output power cable of the frequency converter is
analyzed, which is influenced by switching frequency, output voltage, and starting state. Then, the analysis model of the
shearer CAN bus crosstalk characteristics based on the double conductor transmission line is established, the crosstalk es-
timation method of the shearer CAN bus based on the crosstalk influence factor is proposed, and the relationship between
the crosstalk effect of bus and wiring distance, cable type, height from the ground, and other factors is studied. Based on
the analysis mentioned above, a bus anti-interference optimization wiring process and a shearer bus anti-interference test
visual system are developed for an intelligent shearer electric control box. To verify the feasibility of the proposed method,
the bus interference test experiments are designed and carried out before and after the wiring optimization of the electric
control box. The results show that the deviation degree of the CAN bus data frame waveform before and after the optimiz-
ation is 0.149 3 and 0.030 5, respectively, and the disturbance rate before and after optimization is 56.07% and 35.33%, re-
spectively.

Key words: intelligent shearer; bus anti-interference; cable electromagnetic radiation; bus crosstalk; arrangement of
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Fig.12  Joint control platform of system radiation interference model and Simulink
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Table 2 Bus crosstalk initial data set

F% Lm dJem  p/mm & hlcm  f/MHz yIv
1 1 1 0.55 3.18 1 2 0.336 6
2 1 1 0.55 3.18 1 3 0.2722
3 1 1 0.55 3.18 1 6 0.285 8
4 1 1 0.55 3.18 1 10 0.2820
11 1 3 1.00 3.18 1 9 0.172 8
12 1 3 1.00 3.18 1 10 0.1756
119 1 2 0.55 3.18 1 10 0.267 7
120 2 2 0.55 3.18 1 10 0.239 8
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Table 3 Comparison and evaluation for crosstalk estimation

. GS-SVR SSA-SVR
Enmap Ewms Emap Ens
1 0.5185 0.0211 0.1358 0.0015
2 0.3025 0.0115 0.1292 0.0012
3 0.428 1 0.062 8 0.091 8 0.0009
4 0.5112 0.003 4 0.1504 0.0017
5 0.491 4 0.007 1 0.1087 0.0010
6 0.4384 0.0145 0.1323 0.001 5
P 0.448 4 0.020 1 0.1247 0.0013

T o S5 Uk TN, AR SCHRE Y SSA-SVR i
AHEL T GS-SVR Jy ik LAk T+ o BE 0T sy . 7RI 2
fili b, A 5%k 2 RO R IS S B P T S B
Z I B SE R BGHEA T3, GS-SVR Al SSA-SVR A
KRE BTN 85.17% F1 98.11%, ] %, A SC 4
Y SSA-SVR J7 i AT Xof £ B0 AR Ak F 47 T Ay o 11
A,
23 REVSEELBMPMMESH

Shy i — 2 BRI RE AL R ML 26 37 B 45 R
O TR BE AL R ML SR TP A0 Ze AR Ak 4R ALk 4,
EHAEVT LI WA PR A R AR T 5
bt G, S et a s aEsEEm 2 5 (—8&
SRR AR WU TR TARIRAS T B ae ik
BN ZER IR, 51— B AT R 3 5
#4), USBCAN 5tk 1 4, CANfF 500 14>, &
fefb R BEHLIY ACS800-11-0070-3+N651 -5 75 47 48
1 5, AR EAF LS (R L. BRik . Bk
W), FEHFAE 19 iR, X245 e b4 T 58 3 1Y
HL AR 5K B, I AT AR s i R4 i
P, SRIG HE R TOBA 0 1 m AR St ol 128
V- B E AT b, AR E Bl ) iR
AT A IR A (E e A A TSI, A&l 20
FiR o



% 6 B RS R RE RIS L R TR R S M A2k T2 AL 2917

LRI AT

CA—
PCI

M ...
PC2

N L REES
p%\ “ T TR
AN

USBCAN

= -3

hAbs TH
R HT
A )

VS

10
B —
= =y

?;d .l':
BN IRBE AR FIRAF 5L
E 19 SEESFEf RS TT

Fig.19 Opverall design of test Experimental Platform

i

f A
4

u / B
AC800-11-0070-3+N651
TS5 AR SR

AR AR

FIRCANEL
P WiHPC
WG, USBCAN

SlpAE B CANE
CANEAZL I H W PC

K20 simFa
Fig.20 Test platform

2.3.1  ZRAGIHIHE B0 TR A R AL 52

AR S0 o Yo i 28 40 [ IR 8 b LAt T i k3 TR 2k
4 5 T B A AR R AR AN T R RS LIFY
1qmm50 75, 2 45 HE 2 BRAR b - 1 14 7= B2 b 12k
50 mm, kAT KJE 1N 1 m, KBTS Z, &N
50 Q. H TR AR RIENL R A0 25 [ R, 45 6 SEPr
LT R, KRB AL B IEA 2 50 mm, F I,
PELRIE R d, 43914 10, 20 F1 50 mm, 1055 H 4L
PR A5 3 vty S v L AR AL N A 21 B

FHG LR R W E LR B d BWAE R, M

0.3

—d=10mm ——d=20 mm —— d=50 mm

> 0.1 k
14

B2 0
-0.1F V

02 : : :
0 0.5 1.0 1.5 2.0
1] /s

B 21 kS8l TR Z BRI ) T R A

Fig.21 Analysis of interference results at different distances

between bus and power cable
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Fig.22 Waveform comparison results of the disturbed signal at

different distances
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Table 4 Standard deviation results after interference by

power lines at different distances
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