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Abstract: Due to the use of lumbar folding steering for heavy-duty articulated vehicles in coal mines, the lateral stiffness
is weak and the disturbance factors are complex, making it more difficult to operate and easily causing safety problems. A
new pump controlled electro-hydraulic steering system with lateral motion feedback compensation was proposed to im-
prove the safe driving and handling performance of coal mine heavy-duty articulated vehicles in wet and low adhesion
road environments, and further enhance the intelligent level of coal mine auxiliary transportation. A four-degree-of-free-
dom dynamics model of articulated vehicle and a mathematical model of pump-controlled electro-hydraulic steering sys-
tem were established, including front body longitudinal, lateral, yaw and rear body yaw motion. Based on the yaw velo-
city and lateral acceleration of the decoupling dynamics model, the two-channel articulated steering control strategy of
“steering control follow - yaw stability compensation” was designed. The steering control follow channel can realize the
real-time tracking of the steering input of the driver by the articulated angle. The yaw stability compensation channel en-
sures that the actual yaw velocity is close to the ideal yaw velocity by actively adjusting the articulated angle. By setting
up a pre-filters and attenuation integrator, an active steering control system was designed, which provides corrective ac-
tion by adjusting the steering angle to ensure that the vehicle can follow the driver's intention and maintain path following.
Based on the dSPACE/DS1007 semi physical simulation platform, some simulation tests were conducted on the low adhe-
sion steering conditions of articulated mining vehicles. The effectiveness of the active controller for tracking the desired
path of articulated vehicles was verified by simulating the J-shaped turning condition and selecting the low friction coeffi-
cient road conditions for the medium to low speed operation. Meanwhile, based on the experimental conditions of equival-
ent low adhesion coefficient road surface covered with ice and snow, a 25 t coal mine heavy-duty articulated support truck
was used for actual vehicle turning experiments. The results show that the dynamics model of articulated vehicle and a
mathematical model of pump-controlled electro-hydraulic steering system established can truly reflect the lumbar folding
motion state of this type of vehicle by decoupling the yaw rate and lateral acceleration. The two-channel articulated steer-
ing control strategy of "steering control follow - yaw stability compensation" based on the analysis of articulated vehicle
yaw stability control, as well as the designed active control system, can effectively improve the lateral stability of articu-
lated vehicles under low adhesion coefficient road conditions, and the system has not changed the driver's driving experi-
ence, and after active control intervention, it can timely, safely, and smoothly hand over the vehicle's driving rights to the

driver.
Key words: fully hydraulic steering system; heavy articulated vehicles for mining; dynamical model; path following;
control algorithm
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Fig.5 Simulate the results of J-turn maneuver
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Fig.7 Simulation results of yaw rate (No control)

1P 7 AP 8l R, Ferigad fierb, RAa R, SEBR
A A T R AR RS A R A 22 B, EL A 1 I 30
F1R) S B 32 A S ) LU AR R 428 £ 8 R 2R, B I
BAE, B 208 Eahfeiln, SChriiif
R 5 PAEURE 122 A S LB, ELAE e i A
HSE PRI A R 2N T AR R A U, B e BE
R BE 0, BUORTETA il Jm AR A el o BB

WA TS ((rad « s71)

0

— PR A
---Iiﬁﬂ?fﬁ?iﬁiﬁgl 1 1 1 1
0 1 2 3 4 5 6 7 8 9
N E

K8 BEEA T AR ()
Fig.8 Simulation results of yaw rate (control)
(¥ 57 fE 0.1 rad/s, {HAE 0.5 s PIAESS P [ 0, Sy
IEHREIRRER, A SBEERSbrsfrid R b KA,
REAEORUE A AYER E A T

4 SCIGIGIUE

8 A S FH B R R TR R IR 5 B AT
PR wl B A 1) WXI25 43 A7 X D0 46 5K 3 8 A i o5
HAHE ARk A T T B, M A A B A 9 FR .

MERFEALR R 1) 4 A5 30 s HLAR HEAR [R] 9 4
AN LR AT, S 7 A B R 4 D 4, R
S T B e 2 B o] i B R AT T A, AR AR 5 £
JEE ST NS T LB, A E R A A SR Bl B
TR BRIz BRI — R, ST AR
& ST Bl W e 4 TR, X 2 ST 3K Sl i )
A A A AR e IR, B s ) 5 2
ShPHEAEGIVE A T —Fr B s i nl .

FEAHER IR 20 k/h (19380 B2 AT 5256, [RIF S T RE
% fish 2 SIS0 AE 2 AR ) ANARUE P, 7T AR B R B
PR T ICES . A SCIAR BE R T E TRy (LTEeR
JR A2 1 IS I T R A A, 003 i T A TR e
PRI VKT B 5 N, VK e IR EEAS/ VT 15 mm,
WAL 10 Fros o S0 B A ) 425 1] 56 2 MO T I 1) 44
IR R REARAR U AME” P R G, SEE T GRS
P, SR A I B A B, SELAE R U ], T 4
AR Sl F AL AR (] ) 3K S e, MR i S s 454 £
AL N ARG L 5], A S IR - 2 A

T MIBATE OO R B S50, 20
PERE TR R R S, HEE BB 208k 4
AT Hirschmann/T2840 1] 4= iil#s . DynaCOR/
40-34 & Mg G A 7 & LA & dSPACE/DS1007 >f
SEOM BT T RS AR T S AR A, S
A SRR e T ARV, WAl 11 FoR,
Horr, Hirschmann/T2840 iz 17 4= 2255 PR &



2946 # %

2024 4F5 49 45

e T
Je ATl

SRR T T JEHLE

KO SCBRERL RS A
Fig.9 Experimental prototype and equipment layout

K10 IR R 8w
Fig.10 Low-friction surface composition
1%, DynaCOR40-34 17 57 Sy % 4o 132450 5 1 47 i 300k
S BRI H A5, dSPACE/DS1007 171 57 5L B 7

Bl 1 2RI S AR S AT RS, Bk
T£ MATLAB/ Simulink ¥35% H - & fl g 28, F-4E AT

PAT A AL A

SCEGHT, BACAE 0~4 s B G4 N & 20 km/h 5
AT, SR U B A R 003G N 28 20°, $& IR TE 2
(R 2R | R P AR A T I 118 B, R R AT
FRFEHIAS S 3 Ik, LA R ANE 12 s

H L 12 AT, R THE I, A ) il AR b A 25
KM WAL, BT R BB AR A, i B TR B AR
MG, s TT SRR RN, RIS BT 1l iR
B 25 3 53 P T B AR . RS H RGEXT T I 5

2 IR VA U, 2 SR TS RRAS JLET | 4

8 R R U G U = B 1T U R 30 M3
W — 25 B IR T 7 SCHE M P4 o Sk A i R e i
AT 350

5 % i
(1) FEST T AL AT ARG a] | 01y | K2R R i A

RAERIZ B TE N B BLRE 4240 4 1) il JBE 22 AR gl g 2

A b R ——— iR
AT IEA

Hirschmann/ DS 4302 DS 1007

DA OIS T2840 CAN BUS 4Chn CAN-Bus Processor
HEZIEE

BEIR AR . PTIBEA

P11 BEERRSE MEE h 6% R G
Fig.11 Constitution of the yaw stability controller system



1G58 45 T RE

2 Bl MR H B A0 3 Sl A R T P R

2947

Y/m

75 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35

Xim
K12 ) RS A,
Fig.12 J-Turn maneuver experimental results

DAL FEL 5 1) 2R G B A, T A 3l g 2 R R A 422
FF R 5 R 1) I B L, B T 4R AR
i 3 M Ui T B e 4 o e, Hovh,
A 1o LI 3 3 T S BT S A A B A 0 Bk
VIR ) A i A 1) ST P R R 2R R A M U
T AT S Sl A AR L O S R 132 A
AT PEAE R A

(2) BEHF 1 F il R G A%, 8 AR
Tor FITHTEL DB A A L, A O s ol 5 28 B 5% 4 o
THENTW, EahE e g R ) V\]‘Hh_b’?ﬂﬁ il
TR RERS B | 224 | FAR s 2 JAUSS ik 4572 Bk
B, RGN K AR

(3) 18 5 A 4D 07 R S 6 I I T AR SCHR
A B A R | SR LA T sh i R 48, AT
A SRR R B A AR A AR BRI T B0 T R AR
TETE

2% L #k (References):

1 1
40 45 50

(1] e, BSCHR, sk, 45, JR EE R T AH BURE & - m”
SRETT ) [J]. MBI, 2021, 46(1): 1-15.
LIU Feng, CAO Wenjun, ZHANG Jianming, et al. Current technolo-
gical innovation and development direction of the 14™ Five-Year Plan
period in China coal industry[J]. Journal of China Coal Society, 2021,
46(1): 1-15.

[2] EREE, AT, PESOE, 55 MR Tl “+ =1 BREELT XK
H RS pg 2 [J]. HoRFFHOR, 2021, 49(9): 1-8.
WANG Guofa, REN Shihua, PANG Yihui, et al. Development
achievements of China’s coal industry during the 13th Five Plan peri-
od and implementation path of “dual carbon”
ence and Technology, 2021, 49(9): 1-8.

3] HHEZE, HImE, FSCR . B HLE AR R MOCHBOAR 0], B
1, 2020, 45(1): 455-463.
GE Shirong, HU Eryi, PEI Wenliang. Classification system and key

target[J]. Coal Sci-

technology of coal mine robot[J]. Journal of China Coal Society,
2020, 45(1): 455-463.
[4] EERGAE, Tk, JRFAE. B AR LR IE R G A KOG R BFFE[].

(3]

(6]

(7

[8]

]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

FEBEER, 2020, 45(6): 1959-1972.

HUANG Zenghua, WANG Feng, ZHANG Shouxiang. Research on

the architecture and key technologies of intelligent coal mining sys-

tem[J]. Journal of China Coal Society, 2020, 45(6): 1959-1972.

FUE K, PORTER W, BARNES E, et al. Autonomous navigation of a

center-articulated and hydrostatic transmission rover using a modi-

fied pure pursuit algorithm in a cotton field[J]. Sensors, 2020, 20(16):

4412.

TRNENE, A7 SCUR, BENTL, 55, JRE™ In AR 2 A i 1k Th I 1 PR S AT

HERET). Jme4it, 2022, 47(1): 579-597.

ZHANG Xuhui, YANG Wenjuan, XUE Xusheng, et al. Challenges

and developing of the intelligent remote controlon roadheaders in

coal mine[J]. Journal of China Coal Society, 2022, 47(1): 579-597.

GAO Y, CAO D P, SHEN Y H. Path-following control by dynamic

virtual terrain field for articulated steer vehicles[J]. Vehicle System

Dynamics 2020, 58(10): 1528—1552.

MV, RV, IRAREL, AF R AR

b“? 4, 2021, 46(7): 2123-2135.

HU Xingtao, ZHU Tao, SU Jimin, et al. Key technology of intelli-

E AL 2 R S SR A1),

gent drivage perception in coal mine roadway[J]. Journal of China
Coal Society, 2021, 46(7): 2123-2135.
RBHK, P24, SLEESR, 45, Jo N Bl A s sl ol 5 e IR £
[3]. WL T #2274, 2020, 56(10): 127-143.
XIONG Lu, YANG Xing, ZHUO Guirong, et al. Review on motion
control of autonomous vehicles[J]. Journal of Mechanical Engineer-
ing, 2020, 56(10): 127-143.
DOU F Q, HUANG Y J, LIU L, et al. Path planning and tracking for
autonomous mining articulated vehicles[J]. International Journal of
Heavy Vehicle Systems, 2019, 26(3/4): 315.
YIN Y M, RAKHEJA S, YANG J, et al. Design optimization of an
articulated frame steering system[J]. Proceedings of the Institution
of Mechanical Engineers, Part D: Journal of Automobile Engineer-
ing, 2018, 232(10): 1339-1352.
WU J Q, WANG G Q, ZHAO HY, et al. Study on electromechanic-
al performance of steering of the electric articulated tracked
vehicles[J]. Journal of Mechanical Science and Technology, 2019,
33(7): 3171-3185.
XU T, SHEN Y H, HUANG Y J, et al. Study of hydraulic steering
process for articulated heavy vehicles based on the principle of the
least resistance[J]. TEEE/ASME Transactions on Mechatronics,
2019, 24(4): 1662—1673.
2T, IR, JAFEE, A5, B BOE SR AU A M Ty vk SRR g
WE[I]. $R3h 5 uhili, 2020, 39(17): 31-38.
LI Ning, ZHOU Chen, ZHOU Zihao, et al. A two-stage online itera-
tion time-delay compensation method for real time hybrid testing:
simulation and test verification[J]. Journal of Vibration and Shock,
2020, 39(17): 31-38.
CHAI M, ZHANG W C, WANG D Y, et al. Ride and roll/yaw sta-
bility analysis of articulated frame steer vehicle with torsio-elastic
suspension[J]. Proceedings of the Institution of Mechanical Engin-
eers, Part D: Journal of Automobile Engineering, 2020, 234(7):
1958-1971.
S, XURTRE, WRAR. 2 F PR BE B e R A b s S A £ A il 0],


https://doi.org/10.3390/s20164412
https://doi.org/10.1080/00423114.2019.1648837
https://doi.org/10.1080/00423114.2019.1648837
https://doi.org/10.3901/JME.2020.10.127
https://doi.org/10.3901/JME.2020.10.127
https://doi.org/10.3901/JME.2020.10.127
https://doi.org/10.3901/JME.2020.10.127
https://doi.org/10.1504/IJHVS.2019.101475
https://doi.org/10.1504/IJHVS.2019.101475
https://doi.org/10.1177/0954407017729052
https://doi.org/10.1177/0954407017729052
https://doi.org/10.1177/0954407017729052
https://doi.org/10.1177/0954407017729052
https://doi.org/10.1177/0954407017729052
https://doi.org/10.1177/0954407017729052
https://doi.org/10.1007/s12206-019-0612-7
https://doi.org/10.1109/TMECH.2019.2924191
https://doi.org/10.1177/0954407019885801
https://doi.org/10.1177/0954407019885801
https://doi.org/10.1177/0954407019885801
https://doi.org/10.1177/0954407019885801
https://doi.org/10.1177/0954407019885801

2948

%X

% 2024 4E5F 49 %

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

W JRUE Tl K274, 2016, 48(1): 66—71.

KOU Wei, LIU Xinhui, CHEN Wei. Obstacle negotiation yawing
control of a 2-DOF articulated vehicle with actuator saturation[J].
Journal of Harbin Institute of Technology, 2016, 48(1): 66—71.
CROLLA D.The steering behaviour of articulated body steer
vehicles[C]//Road Vehicle Handling, I Mech E Conference Publica-
tions. 1983.

HE Y, KHAJEPOUR A, MCPHEE J, et al. Dynamic modelling and
stability analysis of articulated frame steer vehicles[J]. International
Journal of Heavy Vehicle Systems, 2005, 12(1): 28.

LASHGARIAN AZAD N, KHAJEPOUR A, MCPHEE J. Robust
state feedback stabilization of articulated steer vehicles[J]. Vehicle
System Dynamics, 2007, 45(3): 249-275.

IIDA M, FUKUTA M, TOMIYAMA H. Measurement and analysis
of side-slip angle for an articulated vehicle[J]. Engineering in Agri-
culture, Environment and Food, 2010, 3(1): 1-6.

IIDA M, NAKASHIMA H, TOMIYAMA H, et al. Small-radius
turning performance of an articulated vehicle by direct yaw moment
control[J]. Computers and Electronics in Agriculture, 2011, 76(2):
277-283.

DAHER N, IVANTYSYNOVA M. Yaw stability control of articu-
lated frame off-highway vehicles via displacement controlled steer-
by-wire[J]. Control Engineering Practice, 2015, 45: 46—53.
BARTNICKI A, DABROWSKA A, LOPATKA M J, et al. Experi-
mental research on directional stability of articulated tractors[J]. Sol-
id State Phenomena, 2013, 210: 77—-86.

MARUMO Y, YOKOTA T, AOKI A. Improving stability and lane-
keeping performance for multi-articulated vehicles using vector fol-
lower control[J]. Vehicle System Dynamics, 2020, 58(12): 1859—
1872.

LIU Z Y, YUE M, GUO L, et al. Trajectory planning and robust
tracking control for a class of active articulated tractor-trailer vehicle
with on-axle structure[J]. European Journal of Control, 2020, 54:
87-98.

GUVENC L, ZHANG W M, YANG Y D, et al. Modelling, verifica-

[27]

[28]

[29]

[30]

[31]

[32]

[33]

tion and analysis of articulated steer vehicles and a new way to elim-
inate jack-knife and snaking behaviour[J]. International Journal of
Heavy Vehicle Systems, 2019, 26(3/4): 375.

GAO Y, SHEN Y H, XU T, et al. Oscillatory yaw motion control
for hydraulic power steering articulated vehicles considering the in-
fluence of varying bulk modulus[J]. IEEE Transactions on Control
Systems Technology, 2019, 27(3): 1284—1292.

B, TE AR, B SR, AR JC AL B iz e R e G
FERIBITTE KR FHSE R, el 2023, 48(2): 1085-1098.

BAO Jiusheng, ZHANG Quanli, GE Shirong, et al. Basic research
and application practice of unmanned auxiliary transportation sys-
tem in coal mine[J]. Journal of China Coal Society, 2023, 48(2):
1085—-1098.

BOHETE, WM, 2% FURE. S0 HLE BB e K 77 1w (1] 4
AR, 2023, 48(1): 54-73.

GE Shirong, HU Eryi, LI Yunwang. New progress and direction of
robot technology in coal mine[J]. Journal of China Coal Society,
2023, 48(1): 54-73.

SRR, A, ik BT TR SL R AR B 3 AT
[J]. e 241, 2020, 45(6): 2193-2206.

MA Hongwei, WANG Yan, YANG Lin. Research on depth vision
based mobile robot autonomous navigation in underground coal
mine[J]. Journal of China Coal Society, 2020, 45(6): 2193—2206.
BRSer, XA, TKRAR, 45, 03 T 22K 1K = BUR 59055
Ho [ SPATRITTEHE SRR I]. BRI, 2020, 45(6): 2182-2192.

CHEN Xianzhong, LIU Rongjie, ZHANG Sen, et al. Development
of millimeter wave radar imaging and SLAM in underground coal
mine environment[J]. Journal of China Coal Society, 2020, 45(6):
2182-2192.

HORTON D N L, CROLLA D A. Theoretical analysis of the steer-
ing behaviour of articulated frame steer vehicles[J]. Vehicle System
Dynamics, 1986, 15(4): 211-234.

TABATABAEI OREH S H, KAZEMI R, AZADI S. Directional
control of articulated heavy vehicles[J]. SAE International Journal

of Commercial Vehicles, 2013, 6(1): 143—149.


https://doi.org/10.11918/j.issn.0367-6234.2016.01.010
https://doi.org/10.11918/j.issn.0367-6234.2016.01.010
https://doi.org/10.1504/IJHVS.2005.005668
https://doi.org/10.1504/IJHVS.2005.005668
https://doi.org/10.1080/00423110600907469
https://doi.org/10.1080/00423110600907469
https://doi.org/10.1016/S1881-8366(10)80004-7
https://doi.org/10.1016/S1881-8366(10)80004-7
https://doi.org/10.1016/S1881-8366(10)80004-7
https://doi.org/10.1016/j.compag.2011.02.006
https://doi.org/10.1016/j.conengprac.2015.08.011
https://doi.org/10.4028/www.scientific.net/SSP.210.77
https://doi.org/10.4028/www.scientific.net/SSP.210.77
https://doi.org/10.1080/00423114.2019.1651877
https://doi.org/10.1016/j.ejcon.2019.12.003
https://doi.org/10.1504/IJHVS.2019.101465
https://doi.org/10.1504/IJHVS.2019.101465
https://doi.org/10.1109/TCST.2018.2803746
https://doi.org/10.1109/TCST.2018.2803746
https://doi.org/10.1080/00423118608968852
https://doi.org/10.1080/00423118608968852
https://doi.org/10.4271/2013-01-0711
https://doi.org/10.4271/2013-01-0711

	1 动力学模型
	1.1 4-DOF车体动力学模型
	1.2 泵控电液转向系统模型建模
	1.2.1 转向器操作单元
	1.2.2 电控比例轴向柱塞变量泵动力单元
	1.2.3 电控流量放大阀与转向油缸执行单元


	2 控制策略
	2.1 横摆稳定性控制分析
	2.2 控制系统的设计

	3 仿真测试分析
	4 实验验证
	5 结　　论
	参考文献

