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Identification and on-site application of the main hazard-causing stratum of
overlying strata in coal mines
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Abstract: In response to the challenging task of accurately identifying the main hazard-causing layer of overlying strata in
the coal mine surface hydraulic fracturing construction, this study focuses on the industrial test of ground hydraulic frac-
turing at the 401102 working face of the Mengcun Coal Mine. The research is conducted using the methods of theoretical
analysis, microseismic monitoring, and on-site investigation to reveal the dynamic disaster mechanism of mine earth-

quakes and rock bursts induced by the movement of thick and hard overlying strata in the coal mines. The relationship
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between the movement characteristics of thick and hard overlying strata based on a three-zone structure loading model of
overlying strata and induced dynamic disasters is analyzed, and a prediction model for mining seismic energy and an es-
timation model for equivalent additional stress in mining areas based on the movement state of key layers are established.
A coal mine identification technology for the main hazard-causing layer of overlying strata is proposed based on the K-
means clustering algorithm and the elbow rule. The construction layer for hydraulic fracturing is determined, and an indus-
trial test is carried out on-site. The effectiveness is verified based on the microseismic monitoring data and theoretical ana-
lysis results, leading to the following conclusions. In the Mengcun Coal Mine’s 401102 working face, both the key strat-
um responsible for rock bursts and mine seismic activities can be traced to the Ry key stratum of the Anding Group, situ-
ated 66 meters away from the coal seam. The primary fracturing movement of this critical stratum Ry imparts an equival-
ent supplementary disturbance stress value of 7.23 MPa, with the seismic energy liberated by this initial rupture motion
quantifying to 6.08x10° J, thereby indicating a pronounced susceptibility towards catastrophic occurrences. After fractur-
ing the key layer which induces mining earthquakes and rock bursts, the theoretical value of the mine earthquake energy is
reduced by 94%, and the theoretical value of the equivalent disturbance stress of the working face is reduced by 76%. High-
energy microseismic events above the working face with an energy of 5x10° J show a noticeable upward trend, with an up-
ward movement of approximately 15 m. The frequency ratio of microseismic events with an energy level of 10° J or high-
er significantly decreases from 60.39% to 17.89%, and the maximum microseismic event energy decreases from 6.65x10° J
t0 9.75x10° J. The proportion of microseismic events with an energy level of 10> J and below significantly increases from
39.61% to 82.11%.

Key words: surface hydraulic fracturing; rock burst; mine earthquake; overburden main control hazard-causing layer;
identification method
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Fig.2 Load three-zone structure partitioning and discrimination model considering the working face mining conditions and the

occurrence state of the thick and hard rock strata

BT = AR A3 IO T AR AR 5 A T
by(2L) FIHRYR H, (HAEFSLRERIE LT, 3 & Z Al ¢
AN RE S8 = iR 1k, BN

(1) 4 TAET A8/ (L < 10h) I, TAETH TR
TA S NN A b, S B dmr = Rl 4k
B hnzat (ILZ) 58407 (SLZ) 1) 5458

(2) 4TRSS/ (H < L) B, FEAEYS
VLT B WY R B R, SO AN, IR A
FAE AR 4 S BB R (ILZ) 5 4 i g
(DLZ) i &b

[, JREAE 2 0 T A0 00 %o A T 7 o —

SR ot B — s R, HARRBR:

(1) MRS 240 T RIS (ILZ) i, JEAd
A BENSAE B 5 R S A L RIE R
BT At i T A4, At ) R 2552 % sl
S H B RRE TR, PR IR A 2 R Oy e 2 R e S R
B m#ay (ILZ2), JEa A 2 A B ZAER s (DLZ)
TR M AE R 2T (DLZ), i (SLZ) JERIAZE .,

(2) YJEREA R AL F IR N Z8at (DLZ) M ifddiaty
(SLZ) I, ARG MG 12 S RRIE, SRR 4 2538 B IR A A
SR AT BRI 53, RN o = SR TG B 25 Ak

AR A AR T AR B SR h B TAE



5 6 4]

I R S e AR EUR R AL S R e B 0 2593

M bo(2L) B E 2R, ¥ TAE 485 6 25T 00, 4%
SIS T AR T AR R R 2 )2 2 S A7

L VRAFSZBIAR L, TR T 5 JEIT R A I R A
JEWRAF AT A AR R 4 2R, Ik 2.

R2 ERARFHREEEEVFHNHE=FEMXSER
Table 2 Partitioning results of the load three-zone structure considering the mining conditions and the occurrence state of the
thick and hard rock strata

. JEREA AT et = )R /m
F2=2 H, LKhKFR p— , - s s an
R AT WAF 27 B RS hin 2 ILZ JERTfIN#H DLZ kT SLZ
1 & — 10k L-10h H-L
2 b= S<10h S L-S H-L
10h<L<H o
3 = 10h<S<L 10h L—10h H-L
4 = L<S<H 10h L-10h H-L
5 i — 10n — H-10h
6 L<10h<H 2 §<10h s 104-S H-10h
7 & 10h<S<H 107 — H-10h
8 A — H — —
H<L<10h o
9 = S<H s H-S —
10 = — 10h H-10h —
11 10h<H<L b= S<10h S H-S —
12 = 10h<S<H 10h H-10h —
13 = — H — —
H<10h<L o
14 2 S<H S H-S —
15 & — H — —
L<H<10h o
16 b= S<H S H-S —

22 FRAZSH

BAs sl Ko HR A THE 58 70 R SRS T A9 T
Mo iz ST RO e i, LARE Sl 4 X ) 22 TR A
JA ML, s B S 51 &I T vhili i, i
FIRE S| & Hh T ST, AR R Hb s e Y A RORE Ak
£ YA ER TR

Ab TR ZAL | 18 3B AR 2 E 3 Bk )
RETE IR 55 A —, PR AT BRI & al il b 19 52 i)
FEEEMARA 255, R 1 S A Hb IX 53 F A8 7 3 S8 5 1)
FFEHOR)ZOL, PR T B OCHE E R R G HRE 2 Y 2

ARMEE, W R THUR B PEXT G2 M dn o . FL
R OCH R R B A B SR R RE S AR Y
Y 2 RO B O R R s gn | kIt
T R 23 () A5 5 BRI Bl 1 ) AR R AR A B2 el 2
JEEE . BT ANES b2 450 KR S
255, R DGR 2 S B p O HRE IE AT RE R A Rl — 2
A, W AT BERER A A A R R AL, BRI 5145 51 i
5, RO 2 s s ECR A 3 FR
221 iz dhEshne s

Ab T AR SRS W G2 TRl e s B A

Hb i 2 A A

EIPS = e Y S R L i LV

K3 - R s s BN B

Fig.3 Schematic diagram of disaster mechanism induced by mine earthquake and rock burst key layer movement
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