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Construction of a landscape ecological network based on landscape ecological risk
assessment: A case study of the resource-based city of Linfen

ZHAO Jikai, YU Qiang, XU Chenglong, MA Jun
(School of Forestry, Beijing Forestry University, Beijing 100089, China)

Abstract: The changes in the landscape structure within resource-dependent urban areas is influenced by a confluence of
factors, potentially resulting in a decreased landscape ecological quality and a heightened ecological vulnerability. Land-
scape ecological quality directly influences the flow and transmission of ecological functions, rendering it a pivotal consid-
eration in the development of landscape ecological networks. In this study, an investigation was conducted utilizing land-
use data spanning from 2005 to 2020, encompassing the city of Linfen in Shanxi Province, China. A landscape ecological
risk assessment model was formulated to analyze the spatiotemporal attributes of landscape ecological risk during this

timeframe. Acknowledging the underlying connection between ecosystem resilience and landscape ecological quality, the
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2020 landscape ecological risk assessment served as the basis for the extraction of ecological source areas using the Min-
imum Spanning Tree with Path Algorithm (MSPA), and the corridors were established using the Minimum Cumulative
Resistance (MCR) model. This framework facilitated the construction of a landscape ecological network, and the complex
network analysis was employed to scrutinize the network’s topological properties. The regions within the study area exhib-
iting high and extremely high ecological risk displayed an initial increase followed by a subsequent decrease, culminating
in an overall reduction in risk levels. The areas surrounding urban development and mining activities displayed relatively
heightened risk levels, while the regions characterized by forests and grasslands experienced relatively lower risks. The
shifts in risk within the study area were predominantly attributed to various factors, including mining activities, urban ex-
pansion, governmental policies, alterations in land-use types, and village migrations. Through the optimization of the land-
scape ecological network using edge addition strategies and a subsequent comparison of network robustness pre- and post-
optimization, it was discerned that the edge addition strategy notably improved the efficiency of energy transfer and inter-
connectivity among network nodes. This ecological risk assessment model, in conjunction with the development of a pro-
spective ecological network, lends a valuable theoretical support to the enhancement of landscape structure within resource-

dependent urban areas and the establishment of comprehensive ecological security systems.
Key words: ecological restoration in mining areas; landscape ecological risk; spatial autocorrelation; ecological net-

work; complex network optimization; robustness
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