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Mechanical model of deformation-seepage-erosion for Karst collapse column water
inrush and its application
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Abstract: With the extension of coal mining in China, fault water inrush has become one of major disasters threatening
the safety of coal mine production. Based on the research results related to the mining-induced fault water inrush, this pa-
per proposes a conceptual model of water inrush caused by the erosion synergy of mining-induced rock mass damage rup-
ture and fractured rock mass (fault), derives the permeability evolution equation of the two media, and systematically con-
structs the cooperative disaster causing mechanism model between mining failure and particle erosion inside faults. The
numerical simulation is conducted to study the deformation and failure of rock mass, the particle transport in faults and the
evolution characteristics of seepage channel, and systematically explain the temporal and spatial evolution mechanism of

seepage catastrophe caused by mining-induced fault inrush. The results show that: (D With the continuous advancement of

Yim BHEA: 20230326  {&[E HHE:2023-08-31 EBEHE: T L DOI 10.13225/j.cnki.jees.2023.0394

E&TH: BE A RPAEE I E (52274193, 52274079, 52174073)

YEE B : BIBAE (1984—), T, IWARE SR, BI#HZ, i+ E-mail: yaobanghua@126.com

BIEIEE: AL 8 (1984—), B, RUILR N, RIEd, L. E-mail: dufeng@hpu.edu.cn

S AR kIR, AR, AL, S5 RSN A R0 5 W72 v i B[R] B0 B A AR AL (0], SR, 2024, 49(5):
2212-2221.
YAO Banghua, LI Shuo, DU Feng, et al. Mechanical model of deformation-seepage-erosion for Karst collapse % z:j] |§€] 5
column water inrush and its application[J]. Journal of China Coal Society, 2024, 49(5): 2212—2221.



https://doi.org/10.13225/j.cnki.jccs.2023.0394
mailto:yaobanghua@126.com
mailto:dufeng@hpu.edu.cn

553

WA SRS AR 55 W2 il ] B0 2 S AL BIL 2213

working face, the damage field of mine floor rock mass is connected with the fault erosion fracture, forming a seepage

path of aquifer-fault-mining fracture-working face, and with the increase of erosion time, it finally develops into several

dominant water diversion channels, resulting in a sharp increase in water inflow at the working face and a lagging water

inrush. @ With the increase of seepage time, the water inflow and fracture opening degree inside faults all show three

stages: slow change, sudden increase and stable, and the erosion particle concentration shows a trend of first increasing

and then decreasing. (3 Under the geological conditions of the mining area studied in this paper, in order to prevent the oc-

currence of fault water inrush, the methods such as advanced grouting or leaving water prevention coal pillars can be adop-

ted, and the advance grouting time should be before the bottom plate fracture zone connects faults, if grouting is not ap-

plied, the width of the reasonable water prevention coal pillar should not be less than 20 m.

Key words: fault water inrush; quarried rock mass; erosion; water inrush channels
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Fig.1 Conceptual model of synergistic water inrush between mining failure and particle erosion inside faults of

surrounding rock of working face
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Fig.2 Geometric model of rock damage-seepage
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Table 3 Main parameters of fault permeability

characteristics
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different times
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