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Abstract: Coal-water slurry gasification is one of advanced coal gasification technologies. The improvement on the effi-
ciency of coal-water slurry gasification is helpful to promote the clean and efficient utilization of coal. Coal-water slurry

preheating technology is considered as one of the key technologies to improve the energy utilization efficiency of coal gas-
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ification. At present, the variation pattern and intrinsic mechanism of thermal conductivity of complex liquid-solid suspen-
sions are still not fully understood. The thermal conductivity is an important basic parameter of the medium flow heat
transfer, characterizing its thermal conductivity in the steady-state thermal conductivity process. The transient hot wire
method is used to measure the thermal conductivity of the same concentration coal-water slurry at different temperatures.
The experimental results show that the higher the temperature, the higher the thermal conductivity. The thermal conductiv-
ity of coal-water slurry is determined at different mass concentrations with a room temperature. The experimental results
show that it can be divided into two stages: the mass concentration increases from 51% to 58% in a drop zone, and the
thermal conductivity decreases rapidly, its value decreases from 0.401 W/(m - K) to 0.358 W/(m - K); and the mass con-
centration continues to increase from 58% to 67% in a constant zone, and the thermal conductivity basically remains at
0.358 W/(m - K). Based on the experimental results, the parallel prediction model of thermal conductivity of coal-water
slurry with coal particle-bonded water composite is proposed by considering the parallel model, Maxwell model, general-
ized self-consistent model and other composite models. The water in coal-water slurry contains free water and bound wa-
ter, and the bound water will form a coal particle-bound water composite phase with coal particles, and the coal-water
slurry is regarded as a two-phase composite composed of the composite phase and the free water phase. In the drop zone,
with the increase of coal particle concentration, the free water phase decreases, the composite phase remains basically un-
changed, and the thermal conductivity of coal-water slurry decreases rapidly. In the constant zone, the amount of bound
water in the composite phase decreases with further increase in coal particle concentration, but the thermal conductivity of

the composite phase remains basically stable. The model prediction results agree well with the experimental data.
Key words: water-coal slurry; concentration; thermal conductivity; coal-water composite model; bound water
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model with experimental results
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