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CFD simulation on in-situ ignition of UCG in deep coal seam
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Abstract: Underground coal gasification (UCG) as an alternative coal mining technology is attracting much attention.

However, due to the high experimental cost of UCG, the evolution mechanism of coal seam should be deeply explored pri-

or to the implement of experiments. By virtue of the great computational power of computers, the computational fluid dy-

namics (CFD) is able to simulate the production process of UCG at a relatively lower cost. The in-situ ignition and com-
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bustion of deep coal seam heated by 1 000 K flue gas is simulated and the changes of temperature, molar O, fraction and
porosity are analyzed by the CFD software, Fluent, developed by Ansys cor-poration. It is elucidated that pumping 1 000 K
flue gas for 500 s is inadequate for coal seam ignition, while 1 000 s heating has been enough for coal seam ignition. On
the internal surface of coal seam, the high temperature is accumulated in the 0—0.6 m coal seam near inlet. The maximum
temperature before ignition is below inlet temperature of heating flue gas, 1 000 K, while the maximum temperature after
ignition exceeds 1 000 K and reaches up to 1 250 K. Almost all O, is consumed in the high-temperature zone, while less
than 2% molar O, fraction arrives at the internal surface of coal seam in other lower-temperature zones. The porosity rap-
idly increases in high-temperature zone and at 1000 s the porosity in the part of coal seam reaches up to 0.9. In the interior
of coal seam, the thicker the coal seam is, the lower the temperature rises. The maximum temperature on 7 cm line is only
500 K at 1 000 s and 2 000 s, much lower than that on the internal surface of coal seam when it is heated for the same time.
During 2 000 s ignition, little O, penetrates 7 cm and 14 cm coal seam and the porosities of interior coal seam are all be-
low 0.4. The low porosities are attributed to the low temperature and low molar O, fraction. The simulation on temperat-

ure, molar O, fraction and porosity may provide a reference for how to promote the reaction in the interior of coal seam.
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Table 2 Arrhenius formulas of homogeneous and heterogeneous reactions
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