
 

基于 POA−ELM 的含煤地层异常构造分类
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摘　要：为了更准确地对含煤地层异常构造识别分类，提出了一种基于鹈鹕优化算法 (Pelican Op-
timization Algorithm, POA) 和极限学习机 (Extreme Learning Machine, ELM) 的含煤地层异常构造识

别分类模型 POA−ELM。针对极限学习机随机生成输入权值和隐含层偏置导致性能不稳定的缺点，

利用鹈鹕优化算法对极限学习机的输入权值和隐含层偏置进行寻优，从而改进极限学习机模型性

能，并将 POA−ELM 应用到含煤地层异常构造的识别分类。首先利用 COMSOL Multiphysics5.5 建

立小断层、冲刷带和陷落柱 3 种含煤地层仿真模型，以雷克子波作为震源信号，采用透射波法采

集 3 种模型的槽波信号，建立槽波信号数据集。通过 z-score 法和主成分分析法 (Principal Compon-
ent Analysis, PCA) 对槽波数据进行标准化和降维处理。通过 MATLAB 构建鹈鹕优化算法改进的极

限学习机分类模型 POA−ELM，对小断层、冲刷带和陷落柱进行分类，并通过准确率、精确率和

召回率等评价指标以及交叉验证法对比和评估 ELM、POA−ELM 的分类性能，结果表明 POA 能

够有效优化 ELM，POA−ELM 模型具有更高的分类准确率和更好的稳定性，POA−ELM 对含煤地

层异常构造的分类准确率可达 99% 以上。为验证 POA−ELM 的实际应用效果，将实际断层槽波数

据进行小波去噪等预处理后，作为测试集导入 POA−ELM 模型进行识别，结果表明 POA−ELM 模

型对实际断层识别准确率可达 97% 以上。基于同样的槽波数据集将 POA−ELM 与 ELM、支持向

量机 (Support Vector Machine, SVM) 和 BP 神经网络进行识别分类效果对比，结果表明 POA−ELM
模型的识别分类准确率最高。经研究与分析，POA 能够有效优化 ELM，POA−ELM 模型能够准确

分类地质构造，并有效识别出实际断层，效果优于其他方法。
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Classification of coal-bearing strata abnormal structure based on POA–ELM
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Abstract: In order  to  identify  and classify the abnormal  structures  in  coal-bearing strata  more accurately,  a  POA−ELM
model based on the pelican optimization algorithm (POA) and the extreme learning machine (ELM) is proposed. The per-
formance of extreme learning machine is unstable because the input weights and hidden layer bias are generated randomly.
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The POA can be used to optimize the input weights and hidden layer bias of extreme learning machine, so as to improve
the performance of extreme learning machine model. The POA−ELM model is applied to identify and classify the abnor-
mal structures in coal-bearing strata. Firstly, three coal-bearing strata simulation models of small fault, scour zone and col-
lapse column are established with the COMSOL Multiphysics5.5. The Ricker wave is the source signal. The in-seam wave
signals are collected by wave transmission method, and the in-seam wave data set is established. Then the z-score method
is used to standardize the in-seam wave data and the principal component analysis (PCA) is used to reduce the dimension.
Secondly, the POA is used to optimize the extreme learning machine, and the POA−ELM classification model is construc-
ted with MATLAB. The POA−ELM model is used to classify small fault, scour zone and collapse column. The classifica-
tion performance of ELM and POA−ELM is evaluated and compared by cross-validation method and evaluation indices
such  as  accuracy,  precision  and  recall  rate.  The  results  show  that  the  POA  can  effectively  optimize  the  ELM,  and  the
POA−ELM model has higher classification accuracy and better stability. The classification accuracy of POA−ELM for ab-
normal structures can reach more than 99%. Thirdly, in order to verify the classification effect of POA−ELM in practical
applications,  after  wavelet  de-noising,  z-score  standardization  and  PCA dimensionality  reduction,  the  real  fault  in-seam
wave  data  are  used  as  the  test  set  and  imported  into  the  POA−ELM model  for  classification.  The  results  show that  the
identification accuracy of POA−ELM model for real fault can reach more than 97%. Finally, based on the same data set,
the classification effects of POA−ELM, ELM, support vector machine (SVM) and BP neural network are compared. The
results show that the identification and classification accuracy of POA−ELM model is the highest. Through research and
analysis, the POA can effectively optimize the ELM, and the POA−ELM model can accurately classify different geologic-
al structures and effectively identify real faults, which is better than other methods.
Key words: extreme learning machine (ELM)；pelican optimization algorithm (POA)；abnormal structure of coal-bear-
ing strata；identify and classify；in-seam seismic (ISS)
 

煤矿事故的发生会造成大量的人员伤亡和巨大

的经济损失，煤层异常构造的存在会增加煤矿事故发

生的概率[1]，因此含煤地层异常构造识别研究对提高

煤矿开采的安全性十分重要。槽波地震勘探作为一

种极具发展前景的地球物理勘探方法，不仅能够有效

探测陷落柱、小断层等，同时对采空区及废弃巷道等

探测效果也较显著[2]。该技术具有探测精度高、距离

大、波形特征易于识别、抗干扰能力强等优势[3]，尤其

在探测精度和距离方面优于其他煤矿井下物探方法[4]，

近年来被广泛应用[5-7]。

槽波地震数据的处理与解释是槽波地震勘探的

重要一环，目前常用的方法有层析成像、偏移成像等

成像法[8-11]，通过成像能直观地确定构造的种类和位

置，但数据处理与成像过程繁杂，耗时耗力，并且成像

结果多依靠人工经验解释，易出现偏差，此外，共中心

点叠加法、速度分析法也常用于处理槽波数据[12-14]，

但多与成像技术结合，同样易出现偏差。近些年，机

器学习也被应用到地震勘探领域[15]，通过地震数据识

别异常地质构造，但多以识别断层为主[16-19]，在其他

构造识别方面研究较少。

极限学习机 (ELM)是由 HUANG等 [20]于 2004
年提出的一种单隐含层前馈神经网络，与传统训练算

法相比，ELM具有设置参数少、学习速度快、训练误

差小以及泛化性能好等优势[21-23]，但由于 ELM的输

入权值与隐含层偏置是随机产生的，导致分类性能不稳

定[24-26]；鹈鹕优化算法 (POA)是 2022年由 Pavel Tro-
jovsky和 Mohammad Dehghani提出的，是一种模拟鹈

鹕群体狩猎的智能优化算法，其在逼近最优解方面具

有较强的挖掘能力，并且不易陷入局部最优[27]，能够

为极限学习机寻到最优的输入权值与隐含层偏置，经

过优化后的极限学习机更加适合处理数量庞大、包含

信息复杂的槽波数据，可以更好地完成煤层构造的识

别分类任务。因此，笔者提出基于 POA−ELM的含煤

地层构造识别分类方法，对小断层、冲刷带和陷落柱

进行识别分类研究，并对分类结果进行评价与分析。 

1　方法原理
 

1.1　极限学习机

与传统的前馈神经网络不同，ELM未采用基于梯

度的算法，而是随机选择输入权值和隐含层偏置[28-29]，

并根据最小二乘准则，依据 Moore-Penrose广义逆矩

阵理论求出输出权值[30]。

N (xi, ti) xi = [xi1, xi2, · · · ,
xin]T ∈ Rn ti = [ti1, ti2, · · · , tim]T ∈ Rm

L k

hk(xi)

假设有 个任意样本 ，其中

， ，n 为输入层节点数，

m 为输出层节点数，中间有 个隐含层，第 个隐含层

节点的输出为 ，可表示为
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hk(xi) = g(wk,bk, xi) = g(wk·xi+bk), k = 1,2, · · · ,L (1)

wk = [ωk1,ωk2, · · · ,ωkn]T

bk

wk·xi wk xi g(wk,bk, xi)

式中， 为输入节点与第 k 个隐

含层节点的输入权值向量； 为第 k 个隐含层节点的

阈值； 为 和 的内积； 为激活函数。

βk wk bk

ELM原理如图 1所示。ELM的学习目标可转化

为使输出误差最小，即存在 、 和 ，使得

L∑
k=1

βkg(wk·xi+bk) = yi, i = 1,2, · · · ,N (2)

βk = [βk1,βk2, · · · ,βkm]T

yi

式中， 为第 k 个隐含层节点与输出

层节点的输出权重向量； 为第 个样本对应的模型输出。
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图 1    极限学习机原理

Fig.1    Principle diagram of extreme learning machine
 

式 (2)用矩阵表示为

Hβ = Y (3)

β其中，H为隐含层节点的输出矩阵； 为隐含层与输出

层连接权重矩阵；Y为期望输出矩阵。式 (3)展开形

式为

H = [h(x1),h(x2), · · · ,h(xN)]T =


h1(x1) · · ·hL(x1)
...

...
h1(xN) · · ·hL(xN)


N×L
(4)

β =
[
βT

1 ,β
T
2 , · · · ,βT

L

]T
m×L
,Y =

[
yT

1 , y
T
2 , · · · , yT

N

]T
m×N

(5)

通常将期望输出矩阵 Y与样本标签 T求残差最

小平方和作为评价目标函数，使该目标函数最小的解

就是最优解，目标函数可表示为

min∥Hβ−T∥ 2 (6)

T =
[
tT

1 , t
T
2 , · · · , tT

N

]T
式中， 。

通过线性代数和矩阵理论的知识推导得出式 (6)
的最优解为

∧
β = H†T (7)

H†式中， 为矩阵 H的Moore-Penrose广义逆矩阵。 

1.2　鹈鹕优化算法

鹈鹕优化算法模拟了鹈鹕在狩猎过程中的自然

行为，每个种群成员代表一个候选解。鹈鹕种群初始

化数学描述为

qu,v = lv+ rand(dv− lv),u = 1,2, · · · ,M;v = 1,2, · · · ,r (8)

qu,v u v M

r rand
[0,1] dv lv v

式中， 为第 个鹈鹕的第 维位置； 为鹈鹕的种群

数量； 为求解问题的维度，即待优化变量的个数；

为 内的随机数， 和 分别为求解问题的第 维的

上、下边界。

鹈鹕种群可用种群矩阵表示，即

Q =



Q1
...

Qu
...

QM


M×r

=



q1,1 · · · q1,v · · · q1,r
...

...
...

qu,1 · · · qu,v · · · qi,r
...

...
...

qM,1 · · · qM,v · · · qM,r


M×r

(9)

Q Qu u其中， 为鹈鹕的种群矩阵； 为第 个鹈鹕的位置。

鹈鹕的目标函数值可用目标函数向量表示为

F =



F1
...

Fu
...

FM


M×1

=



F(Q1)
...

F(Qr)
...

F(QM)


M×1

(10)

F Fu u其中， 为鹈鹕种群的目标函数向量； 为第 个鹈鹕

的目标函数值。

鹈鹕的狩猎过程主要为逼近猎物和水面飞行，在

POA算法中，则主要分为勘探阶段和开发阶段。

(1)勘探阶段。

qP1
u,v =

{
qu,v+ rand(pv− Iqu,v),Fp < Fu

qu,v+ rand(qu,v− pv),else (11)

qP1
u,v u v

pv v Fp

I

其中， 为基于第 1阶段更新后第 个鹈鹕的第 维

的位置； 为猎物的第 维的位置； 为猎物的目标函

数值； 为 1或 2的随机整数。若目标函数值在该位

置得到改善，则接受鹈鹕的新位置：

Qu =

{
QP1

u ,F
P1
u < Fu

Qu,else (12)

QP1
u u FP1

u

u

式中， 为第 个鹈鹕的新位置； 为基于第 1阶段

更新后的第 个鹈鹕的新位置的目标函数值。

(2)开发阶段。

qP2
u,v = qu,v+R

(
1− t

S

)
(2rand−1)qu,v (13)

qP2
u,v u v其中， 为基于第 2阶段更新后第 个鹈鹕的第 维
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R R(1− t/S ) qP2
u,v

t S

的位置； 为常数，取值为 0.2； 为 的邻域

半径； 为当前迭代次数； 为最大迭代次数。这一阶

段对鹈鹕位置更新为

Qu =

{
QP2

u ,F
P2
u < Fu

Qu,else
(14)

QP2
u u FP2

u其中， 为第 个鹈鹕的新位置； 为基于第 2阶段

的目标函数值。 

2　含煤地层异常构造模型与槽波信号数据集
建立

 

2.1　含煤地层异常构造仿真模型建立

笔者利用 COMSOL Multiphysics5.5仿真软件，分

别建立小断层、冲刷带和陷落柱的三维含煤地层异常

构造仿真模型，模型尺寸为 100 m×10 m×10 m，上下

围岩厚度均为 4 m，煤层厚度为 2 m，采用主频为 200 Hz
的雷克子波作为地震子波。在煤层中激发后，检波器

会接收到携带各构造信息的槽波信号。三维等效介

质模型参数见表 1，模型结构如图 2所示，为了更好的

模拟实际煤层，避免模型表面边界发生反射现象影响

仿真结果的准确性，在 3种构造模型中均设置了低反

射边界。
 
 

表 1    3 种仿真模型物性参数

Table 1    Physical parameters of three simulation models

介质
纵波速度/

(m·s−1)

横波速度/

(m·s−1)

密度/

(kg·m−3)

上围岩 4 200 2 400 2 700

煤层 2 000 1 200 1 300

下围岩 4 200 2 400 2 700

小断层上下盘破碎带 3 710 1 900 2 400

冲刷带 2 200 1 100 2 800

陷落柱 1 800 900 1 150
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图 2    3种构造仿真模型

Fig.2    Simulation model of three structures
 
 

2.2　槽波模拟与数据处理

笔者采用槽波地震勘探中的透射波法[31]，分别采

集小断层、冲刷带、陷落柱的槽波信号。将震源激发

点置于模型 x=0的中央处，在模型 x=100 m处共设置

606个检波器，检波器在模型中的位置如图 3所示，所

有检波器在 x=100 m处的排列如图 4所示，图 4中每

条红色线由 101个检波点排列形成，红色线间距均为

3 m，6条红色线共排列 606个检波点，检波点间距为

0.1 m，坐标见表 2，Range(2,3,10)表示在 y 方向检波

器位于从 2～10 m以 3 m为步长取点处。
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每种构造模型采集到 606个槽波数据样本，3种

构造模型共得到 1 818个样本，每个样本为时长 0.2 s
的时序数据，包含 501个采样点，得到 1 818×501的样

本数据，如图 5所示，3种模型的槽波信号能量都集中

于 0.05～0.10 s，但每类信号的轮廓与幅值具有明显差

异，这为实现 3种构造模型的分类提供了可能。

在利用极限学习机处理分类问题时，数据的预处

理效果直接关系到模型的分类效果。采集到槽波数

据后，首先对其进行 z-score标准化，消除由不同量纲

与数值量级所引起的数据偏差，使得数据具有可比性。

最后采用主成分分析法 (PCA)对标准化后的数据进

行降维，消除冗余数据，提高分类模型的训练速度，同

时也尽可能保留各数据的原始特征，保证分类结果的

准确率。PCA降维时，若第 p 个特征贡献率接近于 1，
则选取前 p 个主成分代替原来的槽波数据。特征累

计贡献率情况如图 6所示，第 30个特征贡献率达

0.998 5，因此选取前 30个特征，最终将 501个数据特

征降为 30个数据特征，得到 1 818×30的样本数据。 

3　基于 POA−ELM 的煤层异常构造分类模型
建立

 

3.1　传统极限学习机分类模型建立

笔者对极限学习机分类模型的激活函数、隐含层

节点数进行研究。如图 7所示，通过比较分类准确率，

选择最佳激活函数和隐含层节点数，实验结果表明：

随着隐含层节点数的增多分类准确率总体趋势也增

高，能够明显看出，当激活函数为 Sigmoid函数或
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表 2    检波器位置坐标

Table 2    Position coordinates of the detector

方向 坐标 坐标

x 100 100

y Range(2,3,10) Range(0,0.1,10)

z Range(0,0.1,10) Range(2,3,10)
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图 5    槽波样本数据

Fig.5    In-seam wave sample data
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Hardlim函数时，分类准确率远高于 Tribas函数和

Radbas函数。当隐含层节点数设为 20、激活函数设

为 Sigmoid函数时，ELM分类准确率达到了最大值

95.24%，隐含层节点数大于 20时分类准确率趋于平

稳。根据以上分析，笔者将 Sigmoid函数作为极限学

习机分类模型的激活函数，隐含层节点数设置为 20。 

3.2　鹈鹕算法优化的极限学习机模型

基于前文的 ELM分类模型，利用鹈鹕优化算法

对极限学习机进行优化，在有限的迭代次数里，找到

使得 ELM分类效果最佳的输入权值和隐含层偏置，

从而弥补 ELM因随机生成输入权值和隐含层偏置导

致分类效果不稳定的缺点，提高分类模型性能，优化

过程如图 8所示。将极限学习机的分类准确率作为

鹈鹕优化算法的适应度函数，进行数次迭代，比较适

应度值，不断更新鹈鹕位置，并保存目前最优输入权

值与隐含层偏置。笔者将鹈鹕种群数量设置为 30，最
大迭代次数设置为 100，迭代过程如图 9所示，当迭代

次数为 37时，POA为 ELM寻到全局最优解，收敛速

度较快。
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图 9    POA寻优迭代过程

Fig.9    POA optimization iterative process
  

4　测试结果与分析
 

4.1　分类结果与分析

实验中随机选取 70% 的样本数据作为训练集，剩

余 30% 个样本数据作为测试集，将小断层标签设为 1，
冲刷带标签设为 2，陷落柱标签设为 3。ELM测试集

的分类结果如图 10所示，分类准确率为 95.238 1%，

共有 26个样本被分类错误。POA−ELM测试集的分

类结果如图 11所示，分类准确率达 99.450 5%，共有

3个样本被分类错误，从准确率和错误分类样的本分

布情况来看，POA−ELM分类效果优于传统 ELM。
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图 10    ELM分类结果

Fig.10    Classification result of ELM
 

前文通过准确率对整体分类效果进行了分析，下

面通过精确率 (P)、召回率 (R)2个评价指标，对 ELM
和 POA−ELM的分类结果进行评价和对比，P 和 R 均

是针对每类模型的分类结果进行评价。将 ELM和
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POA−ELM分类结果的 P 和 R 整合为如图 12所示，

ELM各模型的 P 和 R 指标均大于 93%；POA−ELM
各模型的 P 和 R 指标均在 99% 以上，POA−ELM分

类效果明显优于传统 ELM，分类效果较为理想。
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图 12    分类结果评价指标

Fig.12    Evaluation index of classification results
 

为消除数据集分布带来的分类性能波动，笔者采

用十折交叉验证评估分类模型的性能，将 1 818×30的

样本数据集和 1 818×1的标签数据集打乱顺序并均匀

分为 10份，依次选取其中 1份作为测试集，其余 9份

作为训练集，每份数据均作为测试集后，完成 1次十

折交叉验证，取均值作为 1次十折交叉验证的结果。

将以上过程重复 10次，结果如图 13所示，经验证传

统 ELM分类准确率波动较大，而 POA−ELM基本保

持平稳状态，且分类准确率均保持在 99% 左右，说明

本文构建的 POA−ELM分类模型对于含煤地层异常

构造识别分类具有稳定且良好的分类性能。
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图 13    十折交叉验证结果

Fig.13    Result of ten-fold cross validation
  

4.2　POA−ELM 的实际应用

为说明本文构建的 POA-ELM模型对实际构造

的分类性能，将长城五号矿 1901N工作面的槽波地震

勘探数据引入测试集进行分类。1901N工作面中槽

波观测系统如图 14所示，在 1901N运输巷布置 53个

炮点，1901N回风巷布置 61个接收点，采用透射法勘

探，得到 2个异常区 YC1和 YC2(图 14洋红色线圈定

的范围)，经分析 YC1、YC2异常区均为贯穿工作面的

断层影响区。选取 P1-34～P1-36 三炮槽波数据用于实

际断层的识别 ，共 183组槽波数据样本 ，为保证

POA−ELM模型对实际断层的识别效果，与仿真槽波

数据中断层测试集样本量一致，将 P1-36 炮中包含断层

信息较少的第 61组槽波数据剔除，剩余 182组作为

识别实际断层的测试集样本，如图 15所示。为保证
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分类速度与准确率，首先对三炮断层槽波进行 4层小

波去噪，去噪前后的槽波如图 16所示，去噪之后波形

噪声有所减少，进而对其进行 z-score标准化和 PCA

降维，得到 182×30的断层测试集数据。182组断层槽

波数据经过数据预处理后，将代替原本的仿真断层测

试集数据进行识别分类。
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图 16    原始槽波数据与去噪槽波数据对比

Fig.16    Comparison of original in-seam wave data and denoised in-seam wave data
 

分类结果如图 17所示 ，整体分类准确率为

97.435 9%，与图 11仿真分类结果相比，准确率有所下

降，小断层被错误分类的数据有所增多。结合图 18
混淆矩阵分析，有 4组断层数据被错误分类为冲刷带，

8组被错误分类为陷落柱，小断层召回率为 93.4%，相

对于图 12召回率下降 6.1%，准确率和小断层召回率

下降的主要原因是相对于仿真槽波数据，实际槽波会

含有部分残留噪声，且与训练集的仿真数据特征存在

差别。总体来看，准确率、召回率及精确率均高于 93%，
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Fig.15    Time-amplitude diagram of P1-34 to P1-36 shot in-seam wave
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分类结果较为理想，说明本文构建的 POA-ELM模型

能够有效分类实际槽波数据，实现地质构造的分类识别。 

4.3　不同方法分类结果对比

基于相同的样本数据，分别采用支持向量机

(SVM)和 BP神经网络 2种方法对含煤地层异常构造

进行识别分类，分类结果如图 19所示，对于仿真数据

4种方法的分类准确率都达到了 90% 以上，其中

POA−ELM和 SVM的准确率都达到了 97% 以上；对

于含断层的槽波数据 POA−ELM的分类准确率达

97.44%，高于其他 3种方法。综合分析，无论是仿真

槽波数据还是含实际断层槽波数据，笔者提出的

POA−ELM分类模型都更具优势。
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图 19    分类结果对比

Fig.19    Comparison of classification results
  

5　结　　论

(1)提出了一种鹈鹕优化算法优化的极限学习机

分类模型 POA−ELM，利用鹈鹕优化算法对极限学习

机的输入权值和隐含层偏置进行寻优，提高了极限学

习机分类模型的分类准确率和稳定性。

(2)将 POA−ELM分类模型应用到含煤地层异常

构造识别分类中，通过建立含煤地层仿真模型，对断

层、冲刷带和陷落柱模型进行了识别分类，取得了良

好的分类效果，分类准确率达 99% 以上，分类性能更

稳定，效果远优于原始 ELM，证明了 POA对 ELM的

良好优化效果和 POA−ELM在含煤地层异常构造识

别分类中应用的可行性。

(3) POA−ELM模型对于实际断层的识别准确率

达 97% 以上，识别效果较为理想。与 ELM、SVM、

BP的分类结果进行对比，无论是仿真槽波数据还是

含实际断层槽波数据，POA−ELM的分类识别准确率

都最高，更具优势。

由于实际槽波数据资源有限，本文只对实际断层

进行了识别，今后将对冲刷带、陷落柱等其他含煤地

层异常构造进行识别，并进一步应用于槽波地震

勘探。
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