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摘　要：及时准确判断故障分支的位置对保障矿井通风系统的可靠性和安全性意义重大。针对实际

工况下，矿井通风系统故障样本数据存在不平衡性，导致传统的机器学习模型诊断能力与泛化能

力差的问题，提出了一种面向通风系统不平衡数据集的 WGAN-div-RF 故障诊断模型。以简单通

风网络为例构造了不平衡比分别为 2∶1、5∶1、10∶1、20∶1 的故障数据集，深入分析了不平衡

样本集对通风系统故障诊断的影响。搭建了基于 Wasserstein 距离生成对抗网络 (WGAN-div) 对不

平衡数据集进行数据增强处理，在构建网络时创新性地加入了残差块，提高了生成数据的质量，

实现原始样本的有效扩充。结合集成学习中的随机森林 (RF) 模型实现通风系统故障分支诊断。以

东山煤矿通风系统为实验对象，分别进行了不同数据增强模型、不同分类模型以及不同数据生成

率下的故障诊断对比实验，以多种评价指标及 t-SNE 可视化对模型有效性进行评估。结果表明：

加入残差块的 WGAN-div 模型生成数据与真实数据具有很好的相似性，相较于 GAN 模型、

WGAN 模型和 WGAN-gp 模型，WGAN-div 模型更具优越性；应用 WGAN-div 模型进行数据增强

后，机器学习分类模型的性能提升明显；当扩充数据集达到平衡时，与其他集成模型及常用的矿

井通风系统故障诊断 SVM 模型相比，RF 模型在 Re、Pr、Gmean 和 F1 指标上均占优势。
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Intelligent fault diagnosis of mine ventilation system for imbalanced data sets
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Abstract: It is of great significance to determine the location of fault branch timely and accurately to ensure the reliability
and safety of mine ventilation system. To solve the problem that the traditional machine learning model has the poor dia-
gnostic  ability  and  generalization  ability  due  to  the  imbalance  of  sample  data  in  mine  ventilation  system  under  actual
working conditions,  a  WGAN-div-RF fault  diagnosis  model  is  proposed.  Taking a  simple  ventilation network as  an ex-
ample, the fault data sets with the imbalance ratios of 2∶1, 5∶1, 10∶1, 20∶1 are constructed, and the impact of imbal-
anced  samples  on  the  ventilation  system  fault  diagnosis  is  analyzed  indepth.  The  Wasserstein  divergence  for  GANs
(WGAN-div) is built, and the residual blocks are added innovatively to improve the quality of the generated data and ex-
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pand the original sample set. Combined with the RF model, the fault diagnosis of ventilation system is realized. Taking the
ventilation system of the Dongshan Coal Mine as the experimental object, the comparative experiments are carried out re-
spectively with different data enhancement models, different classification models, and different data generation rates. The
effectiveness of the model is evaluated with various indexes and t-SNE visualization. The results show that the data gener-
ated by the WGAN-div model with residual blocks has a good similarity to the real data. Compared with GAN, WGAN,
and WGAN-gp, the WGAN-div model is superior. After applying the WGAN-div model for data augmentation, the per-
formance of the machine learning classification model is significantly improved. When the expanded data set is balanced,
compared with other integrated models and the commonly used SVM model for mine ventilation system fault diagnosis,
the RF model is superior in Re, Pr, Gmean and F1 indexes.
Key words: mine ventilation system；fault diagnosis；imbalanced data；generate adversarial network；random forest
 

如何及时准确的判断故障的位置，已成为煤矿亟

待解决的一个难题[1-2]。随着煤矿智能化建设的发展，

应用机器学习算法实现通风系统的智能故障诊断，助

力矿井通风智能化管理是研究的关键[3]。

随着大数据、工业互联网、人工智能等技术的发

展，故障诊断技术在电网[4]、机械设备[5]、航空航天[6]

等不同工程领域应用成熟。2018年，刘剑等[7-8]以风

量作为输入特征，应用支持向量机 (Support  Vector
Machine,SVM)算法确定了矿井通风系统故障位置及

故障量，这开创了应用机器学习进行矿井通风系统故

障诊断的先河，2020年应用遗传算法构建了矿井通风

系统故障诊断无监督模型，无需样本参与训练，有效

提升了诊断性能；HUANG等[9-11]利用卡尔曼滤波模

型对矿井监测风速数据进行了预处理，并提出了基于

混合编码算法的矿井通风系统无监督学习故障诊断

模型，实现了故障位置和故障量的同时诊断；周启超

等[12]基于改进的遗传算法对矿井通风系统故障诊断

SVM模型的参数进行了优化研究，有效避免了模型易

出现过拟合的问题；倪景峰等[13-14]提出了基于随机森

林和决策树的通风系统故障诊断方法，并证实了随机

森林模型优于决策树模型；张浪等[15]选择了 SVM、神

经网络和随机森林 (Random Forest,RF)3种矿井通风

系统故障诊断机器学习算法进行对比分析，结果表明

神经网络模型具有更高的准确率；ZHAO等[16]以大明

矿为研究对象，在构建的故障巷道范围库内应用改进

的 SVM算法进行通风系统故障诊断，缩减了故障定

位的范围，提高了样本训练效率；WANG等[17]构建了

基于多标签 K-近邻 (Multi-label  K-Nearest  Neighbor,
ML-KNN)的机器学习模型，解决了矿井通风系统多

个位置发生故障时的快速诊断问题；LIU等[18]应用 4
种机器学习算法：K-近邻 (K-Nearest Neighbor,KNN)、
多层感知机 (Multilayer Perceptron,MLP)、SVM和决

策树 (Decision Tree,DT)对矿井通风系统故障诊断模

型性能进行了充分评价，确定了 KNN模型和 DT模

型的优越性。虽然机器学习算法在矿井通风系统故

障诊断中表现优异，但目前的矿井通风系统故障诊断

模型的建立都是在数据集较为完备的前提下进行的。

但是，在实际的通风系统故障情形下，完备的数据集

条件是不能满足的。机器学习分类器高度依赖完备

的样本集，不平衡的样本集训练出的模型通常不具有

参考意义。如何在样本不平衡情况下开展故障诊断

是一个严峻的挑战。机器学习领域的学者们通常从

算法层面和数据层面解决不平衡数据的分类问题。

文献[19]从算法层面出发构建了单分类支持向量机

(One-Class  SVM,OCISVM)与增量学习 (Incremental
Learnin-g,IL)相结合的通风系统故障诊断模型，但是

该方法依赖于特定算法，导致适用性较差。

鉴于此，笔者从数据层面和网络体系层面开展不

平衡数据集的通风系统故障诊断研究，构建了基于

Wasserstein距离的生成对抗网络 (Wasserstein diver-
gence for GANs,WGAN-div)，创新性地在 WGAN-div
模型中加入残差块实现原始数据增强处理，重构平衡

数据集。结合集成学习中的投票机制实现通风网络

分支故障诊断，确定了 RF模型在通风系统故障诊断

中的优越性。有效解决了实际工况下样本不平衡的

故障诊断问题，为智能诊断技术真正应用到矿井提供

技术支撑。 

1　处理不平衡数据集的改进模型
 

1.1　通风系统故障数据不平衡分析

矿井通风系统实际工况下，风门、风窗等含通风

构筑物的巷道，采掘工作面，主要用风巷道，通风多分

支交汇点处等位置更易发生故障，产生的故障数据较

多，而其他分支故障概率较低，产生的故障数据较少，

各个分支产生的故障数据样本数量存在很大的差距，

存在数据不平衡问题。如图 1所示，不同颜色的五角

星代表通风系统监测数据中的不同故障分支产生的

故障样本，黄色五角星代表构筑物分支等易发生故障
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巷道产生的故障样本，为多数类故障样本集合；蓝色

五角星代表其他不易发生故障的分支产生的故障样

本，为少数类故障样本集合。
 
 

正常样本

噪声

多数类故障样本

少数类
故障样本

图 1    数据不平衡示意

Fig.1    Schematic diagram of data imbalance
 

矿井通风系统故障分支不平衡数据集可以描

述为 
S m+n = {Xm,Yn}
Xm = {xi|i = 1,2, · · · ,m}
Yn = {yi|i = 1,2, · · · ,n}

(1)

式中，Xm 为少数类故障分支数据集；Yn 为多数类故障

分支数据集；Sm+n 为通风系统故障分支不平衡数据集；

xi 和 yi 为各数据集中的第 i 个样本数据；m 为少数类

样本个数；n 为多数类样本个数。 

1.2　传统的 GAN 模型

x̃ x̃ x̃

生成对抗网络 (Generative  Adversarial  Network,
GAN)模型可以实现新样本数据的生成，从而达到调

整 Xm 和 Yn 的类间平衡度的目的。GAN模型主要由

判别器 D和生成器 G两部分组成，其基本结构如

图 2所示。生成器 G将随机噪声 z 映射到真实样本

空间生成新的数据 ；判别器 D判断 的真假即判别

为真实数据或生成数据。2个网络交替训练，当判别

器 D和生成器 G达到动态平衡时，新生成的数据与

真实数据具有相似特征。
 
 

生成器 生成样本G(z)

真实样本x

判别器 判别结果噪声z

更新生成器

更新判别器

图 2    GAN模型基本结构

Fig.2    Basic structure of GAN model
 

GAN模型的损失函数为

min
G

max
D

V(G,D) =EG(z)～Pz(−D(G(z)))+

Ex～Mr(D(x)) (2)

G(·)

D(·)

其中，x 为真实样本数据；Pz 为随机噪声的分布；z 为

噪声；Mr 为真实数据的分布；EG(z)～Pz
为添加噪声的期

望函数；Ex～Mr
为真实数据的期望函数； 为生成

器的可微函数； 为判别器的可微函数。实际上，

生成器 G的损失函数相当于最小化生成数据分布和

与真实数据分布之间的 JS散度，有

G∗ =min
G

V(G,D∗) =min
G

Ex～PG(−D(x))+Ex～Mr
(D(x)) =

min
G

2JS(Pr(x)∥PG(x))−2lg 2 (3)

式中，PG 为生成数据的分布；G*、D*分别为生成器损

失函数和判别器损失函数的最优解；Ex～PG
为生成数

据的期望函数；JS为 JS散度。 

1.3　WGAN-div 模型

在 GAN训练初期，PG 与 Mr 一般不会重叠，判别

器 D容易判定数据的真假，但此时，该损失函数中的

JS散度退化为常数项 lg 2，进而导致生成器 G的梯度

消失，无法应用梯度下降法对网络进行训练，这使得

传统 GAN模型出现训练不稳定的问题[20]。2017年，

ARJOVSKY等 [20]提出应用 Wasserstein距离代替 JS
(Jensen-Shannon)散度以解决传统 GAN模型梯度消

失的问题，构建了基于 Wasserstein距离的生成对抗网

络 (Wasserstein GAN，WGAN)模型。但是在 WGAN
训练过程中，通常需要保持梯度的绝对值小于某个

固定值，文献[21]提出了加入惩罚因子的 GAN模型

(Wasserstein for GANs,WGAN-gp)模型，保证生成样

本与真实样本之间满足 Lipschitz连续，但该方案并没

有理论依据。对此，文献[22]提出了不需要 Lipschitz
约束的 WGAN-div模型，并在理论和应用上都证明了

其优越性。基于前人的研究，笔者选择 WGA-div数

据增强模型，损失函数为

LG = −EG(z)～PG
[D(G(z))] (4)

LD =EG(z)～PG
[D(G(z))]−Ex～Mr[D(x)]−

kE x̂～pu[∥∇D(x̂)∥p] (5)

E x̂～pu x̂

x̂
x̂ = αx+ (1−α)G(z) α α ∈ [0,1] x̂

式中，LG 为生成器损失函数；LD 为判别器损失函数；

EG(z)～PG
为生成器噪声的期望函数； 为插值 的期

望函数， 为生成样本与真实样本之间的随机插值，

， 为系数， ；pu 为插值 的

分布；k、p 为范数的幂，根据前人研究和实验测试，设

置 k=2、p=6。 

1.4　残差块

文献[23]针对深度神经网络训练困难问题，提出

了残差学习框架，能够简化深度神经网络的训练；文

献[24]应用加入残差块的生成对抗网络实现了光伏数
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据的缺失值重构。鉴于此，为了防止使用深度卷积网

络搭建的 WGAN-div模型在训练过程中出现梯度消

失或网络退化的问题，笔者在判别器和生成器中加入

了恒等映射残差块，残差块如图 3所示[23]。
  

卷积层卷积层+

激活函数

F(x)H(x)

激活函数

x(捷径)

x

图 3    残差块示意

Fig.3    Schematic diagram of residual block
 

残差块以真实数据 x 为输入，主线径上有 2个卷

积层，其目标函数为 H(x)，定义为

H(x) = f (x,W)+ x (6)

r = m+
∑

x̄i S ′ =
{
X′r,Yn

}
X′r

其中，f(x, W)为映射函数；W 为卷积层的权重。恒等

映射残差块不仅可以学习 x 与 H(x)的差别而且保证

了 2者尺寸相同。残差块的引入使得网络的训练更

容易，避免了梯度消失和梯度爆炸的问题。因此，笔

者采用加入了残差块的 WGAN-div模型对通风系统

监测数据不平衡样本进行数据扩充。将通风系统监

测数据故障数据集中少数类样本个数由 m 调整到

，进一步得到平衡数据集 ，其

中， 为平衡后的少数类样本数据集。 

2　基于 WGAN-div-RF 的通风系统故障诊断
 

2.1　RF 分类模型

随机森林作为一种典型的集成学习模型，可以处

理高维数据的分类，因此笔者选择 RF作为通风系统

故障诊断多分类器。将风速数据作为 RF分类模型的

输入，将故障分支编号作为 RF分类模型的输出。具

体过程如下：对样本数据集进行 Booststrap采样，得

到 Kn 个样本子集，应用子集训练出 Kn 个决策树，将

测试数据输入 Kn 个决策树集合中得到 N 个结果，采

用投票策略得到最终的分类结果为

F(x) = arg max
y

Kn∑
i=1

I( fi(v, θi) = y) (7)

θi

I(·)

式中，F(x)为 Kn 个决策树投票确定的矿井通风系统

故障分支；fi 为第 i 个决策树的分类模型；v 为输入模

型的特征参量，本文为风速数据； 为用于训练第 i 个
决策树的样本子集； 为示性函数 (分别以 1和 0
表示集合内是否存在该数值)；y 为待判别的故障分支

编号。 

2.2　整体构架及流程

基于 WGAN-div-RF的通风系统故障诊断整体构

架如图 4所示。具体流程如下：
 
 

... ...

4.5 2.7 3.2 ... 3.6
4.5 2.7 3.2 ... 3.6
4.5 2.7 3.2 ... 3.6
4.5 2.7 3.2 ... 3.6

4.5 2.7 3.2 ... 3.6

生成样本

生成器G

噪声z 全连接层 卷积层 残差块 卷积层

...

4.5 2.7 3.2 ... 3.6
4.5 2.7 3.2 ... 3.6
4.5 2.7 3.2 ... 3.6
4.5 2.7 3.2 ... 3.6

3.0 1.7 1.5 ... 2.6

真实样本

...

...

卷积层 残差块 卷积层全连接层

判别器D

判别结果
更新参数G 更新参数D

训练样本集

训练子集1

训练子集2

训练子集n

决策树1

决策树集合

通风系统故障
数据样本集

数据预处理

训练
样本

测试
样本

正常
样本

故障
样本

新故障
样本

新增广
样本

RF网络

故障诊断结果

WGAN-div

RF网络

WGAN-div

决策树2

决策树n
测试集

... ...

投票

( a ) WGAN网络结构

( b ) RF网络结构 ( c ) 故障诊断流程

图 4    WGAN-div-RF模型构架

Fig.4    WGAN-div-RF model architecture
 

(1)由于实际工况下矿井故障样本数据获取困难，

本文应用智能矿井通风仿真系统 (IMVS)模拟通风系

统故障，构造通风系统故障不平衡数据集 O，将数据

集划分为测试样本集 Ost 和训练样本集 Oin。
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(2)应用 WGAN-div模型对不平衡的训练样本集

Oin 进行数据增强处理，生成新的故障样本 On，将 On

加入到原训练样本集 Oin 中合成新的增广样本 Oex。

(3)用平衡后的增广样本集 Oex 训练 RF模型，获

得训练好的故障诊断模型。

(4)将测试样本集 Ost 输入训练好的 RF模型进行

通风系统故障诊断。 

2.3　评价指标

通风系统故障诊断多分类模型的评价通常建立

在二分类混淆矩阵的基础上，对于样本不平衡的多分

类问题，准确率指标难以实现对分类结果的准确评价，

因此，文中增加了召回率 Re、精确率 Pr、Gmean、和 F1

分数对通风故障诊断模型进行综合评价。各个指

标[25]的定义如下：

A =

N∑
i=1

TPi+

N∑
i=1

TNi

N∑
i=1

TPi+

N∑
i=1

FPi+

N∑
i=1

TNi+

N∑
i=1

FNi

(8)

Pr =

N∑
i=1

TPi

N∑
i=1

TPi+

N∑
i=1

FPi

(9)

Re =

N∑
i=1

TPi

N∑
i=1

TPi+

N∑
i=1

FNi

(10)

F1 =
2PrRe

Pr+Re
(11)

Gmean =

√√√√√√√√√√√√√√√√√
N∑

i=1

TPi

N∑
i=1

TPi+

N∑
i=1

FNi

N∑
i=1

TNi

N∑
i=1

TNi+

N∑
i=1

FPi

(12)

式中，A 为模型故障诊断准确率；Pr 和 Re 分别为模型

的平均精确率和召回率；Gmean 为召回率和特异度的几

何平均值；N 为输入模型的通风网络分支数，TPi 为第

i 个故障分支的真正例；TNi 为第 i 个故障分支的真负

例；FPi 为第 i 个故障分支的假正例；FNi 为第 i 个故障

分支的假负例。 

3　不平衡数据对故障分支诊断影响实验分析

1 037.2+

52.69q−0.52q2

为了验证不平衡数据对通风系统故障诊断的影

响，以图 5所示简单角联通风网络为例，设计不同不

平衡比下的故障诊断实验。该网络中分支数为 7，节
点数为 6，e1 和 e7 分别为进风分支和回风分支，调节

风 窗 安 设 在 e4 分 支 ， 风 机 特 性 方 程 为

，其中，q 为风量。通风参数见表 1。采

用智能矿井通风仿真系统 IMVS模拟分支故障[7](不
包括源汇分支)，故障数据生成的具体方法参见文

献[7]，按照不同的不平衡比生成 4组数据集，构造 4
组实验方案。
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图 5    简单通风网络

Fig.5    Simple ventilation network diagram
 

e4 分支安设了风窗，相较于其他分支更容易发生

故障，因此通过增加 e4 分支的故障次数改变不平衡比。

不平衡比分别设置为 2∶1、5∶1、10∶1、20∶1，e4 分
支的模拟故障次数按照不平衡比的不同分别设置为

100、250、500、1 000。为了方便比较，实验将少数类

故障样本数量设置为相同，即除了 e4 分支外，e2、e3、
e5、e6 每个分支模拟故障 50次，相应的全部分支的故

障样本总数分别为 300、450、700、1 200，对应的实验
 

表 1    简单网络各分支初始参数

Table 1    Initial parameters of each branch of a simple network

分支 断面形状 断面宽度/m 断面高度/m (m3·s−1)风量/ N·s2·m−8风阻/( )

e1 矩形 4.5 3.60 78.325 0.054
e2 矩形 3.6 3.20 25.542 0.265
e3 矩形 5.1 4.20 21.386 0.084
e4 矩形 4.6 3.72 4.201 8.210
e5 矩形 5.1 3.92 52.738 0.062
e6 矩形 5.2 4.11 74.124 0.192
e7 矩形 4..5 3.67 78.325 0.058
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方案分别记为 T1、T2、T3、T4。每一组实验均对应一

个平衡数据集作为对照实验组进行对比分析。为了

保证实验对比的合理性，平衡数据集的故障样本总量

应与不平衡数据集保持一致即每一组实验的故障样

本总数应为 300、450、700、1 200，由于平衡样本集中

每一条分支的故障样本数应相同且排除源汇分支共

有 5条分支，因此，平衡数据集中 4组实验各分支故

障次数分别设置为 60、90、140、240，对应的实验方案

分别记为 D1、D2、D3、D4。

为严格控制相关变量，在保证故障样本量一致的

同时，各个实验模型均应在最优参数下运行才具备比

较意义。以最大化 F1分数为目标进行调整，经十折

交叉验证确定各实验 RF模型最佳参数，参数定义见

v

表 2，参数设置见表 3。文中以风速特征作为输入，因

此利用式 (13)将通风网络解算得到的风量 q 转换为

风速 。

v =
q

lewe
(13)

v′i e′i

其中，le 为巷道断面高度，m；we 为巷道断面宽度，m。

为以 T1 实验为例，其部分故障样本数据见表 4，表中

为各分支风速，m/s； 为故障分支。将每一组实验

数据集的 70% 划分为训练集，30% 划分为测试集，以

故障分支编号作为输出进行故障诊断实验，得到测试

集的混淆矩阵如图 6所示，横坐标表示预测故障分支

编号，纵坐标表示真实故障分支编号。实验 T1～T4 的

综合评价指标结果如图 7所示。
 
 

表 2    分类模型参数定义

Table 2    Definition of classification model parameters

参数 定义 参数 定义

N' 最大迭代次数 η 学习率

Td 树的最大深度 Mp 节点分割所需的最小样本数

M 弱分类器的数量 Mf 叶节点所需的最小样本数

Tf 子样本比率 c 惩罚系数

ω 随机采样比例 K 核函数
 

 
 

表 3    RF 模型参数

Table 3    RF model parameters

实验方案 参数设置 实验方案 参数设置

T1 M=30，Td=25，Mp=2，Mf=1 D1 M=10，Td=12，Mp=1，Mf=1

T2 M=35，Td=30，Mp=2，Mf=1 D2 M=20，Td=18，Mp=1，Mf=1

T3 M=100，Td=50，Mp=2，Mf=1 D3 M=50，Td=30，Mp=1，Mf=1

T4 M=100，Td=50，Mp=2，Mf=1 D4 M=50，Td=30，Mp=1，Mf=1
 
 

 

表 4    T1 实验模拟故障样本集

Table 4    T1 simulation fault sample set

样本 v′1 v′2 v′3 v′4 v′5 v′6 v′7 e′i

1 5.326 2.182 2.765 0.234 3.614 2.418 4.581 2

2 5.235 2.112 2.452 0.211 3.871 2.563 4.113 2
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101 5.124 1.360 3.621 2.395 5.364 4.261 3.693 4

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

200 4.590 1.329 3.262 2.151 5.238 4.517 2.581 4

201 4.020 4.670 2.152 3.240 2.69 1.266 3.657 5

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

299 4.962 2.824 2.350 1.325 3.201 2.345 3.65 6

300 4.620 3.622 2.103 2.120 2.590 2.125 2.326 6
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图 6    简单通风网络故障诊断实验混淆矩阵

Fig.6    Confusion matrix of simple ventilation network fault diagnosis experiment
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图 7    简单通风网络不平衡数据集故障诊断实验评价指标

Fig.7    Experimental evaluation indexes of fault diagnosis in unbalanced data set of simple ventilation network
 

由图 6(a)可知，实验 D1～D4 的平均准确率分别

0.922、0.933、0.957、0.970，可以看出 RF分类模型能

够有效地对通风系统故障进行诊断。但值得注意的

是，理想的训练样本条件是获得良好诊断结果的前提，

理想的训练样本不仅意味着故障样本数据充足，还以

意味着故障样本数据中各个分支有着平衡的故障样

本数量。然而，实际的矿井通风系统难以获得各分支

故障样本均衡的数据集。由图 6(b)和图 7可知，实验

T1 的 Re、Pr、Gmean 和 F1 分数平均值分别为 0.91、0.93、
0.90、0.92；实验 T2 的 Re、Pr、Gmean 和 F1 分数平均值

分 别 为 0.89、 0.95、 0.88、 0.91； 实 验 T3 的 Re、 Pr、

Gmean 和 F1 分数平均值分别为 0.812、0.95、0.82、0.87；
实验 T4 的 Re、Pr、Gmean 和 F1 分数平均值分别为 0.73、
0.95、0.81、0.78，可以看出随着不平衡比例的增加，除

模型的精确率未发生明显变化之外，召回率、Gmean 和

F1 分数不断降低，由此可见不平衡数据影响了模型的

整体性能，其鲁棒性降低显著，不平衡数据使得模型

出现漏判和误判的情况较多。尤其，由图 7中 T4 实

验可知，当不平衡比为 20∶1时，各故障分支中 Re 的

最大值为 1，最小值为 0.6；Pr 的最大值为 1，最小值为

0.83；F1 分数的最大值为 0.96，最小值为 0.73，各分支

指标值的分布差异较大，分析认为数据不平衡易引起

小析取问题，常规的机器学习分类器依据大量多数类

分支 (e4 分支)数据规则建立模型，而忽略了其他少样

本分支的数据特点，从而导致在分类时易将其他分支

故障误诊断为多数类分支 (e4 分支)，随着不平衡比例

的增加，故障样本被误判的比例逐渐升高，这进一步

说明了不平衡数据集对通风系统故障诊断模型的危

害，可见研究的必要性和实用性。 

4　生产矿井实例实验分析
 

4.1　数据准备

笔者以鸡西矿业集团东山煤矿通风系统为例进

行不平衡数据故障诊断实验。实验矿井的通风方式
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为对角式，该矿通风网络如图 8所示，分支数为 96，节
点数为 84，总入风量 14 394 m3/min，4条进风井对应

的分支编号分别为 e2、e1、e23、e5，由南风井、西风井

共同担负全矿井总回风任务，总排风量 14 738 m3/min，
对应的分支编号分别为 e54、e92。安设风门的分支编

号为 e47、e  85、e28、e86、e48、e78、e22、e7、e30、e38、e29、
e19、e65、e52、e84、e33；安设风窗的分支编号为 e10、e83、
e24、e13、e93。风机特性方程分别为：723.65+18.26q−
0.17q2、614+45.2q−0.09q2。应用 IMVS模拟分支故

障 (不包括源汇分支)[7]，其中风门风窗构筑物所在分

v′i
e′i

支模拟故障 200次，其他分支模拟故障 10次，得到

5 120组故障样本，数据不平衡比为 20∶1。全矿共安

设了 15台风速传感器，布设位置已在图 8中标出 (本

文以矿井实际安设的传感器为基础，不考虑传感器安

设数量和配置的优化问题)。将风速传感器所在分支

解算得到的风量数据经式 (13)转换为风速数据作为

模型的输入，部分数据见表 5，表中 为各分支风速，

m/s； 为故障分支。将标准化处理后的故障样本数据

按照 7∶3的比例划分为训练样本和测试样本。
 
 

v
82

v
33

v
1

v
3

v
2

v
53

e
2

v
6

e
65 e

70

e
60 v

8

v
10

v
7

v
9

v
11

v
12

v
13

v
14

v
15

v
16

v
17

v
18

v
19

v
20

v
22

v
21

v
23

v
32

v
4

v
24

v
25

v
26

v
27

v
28

v
29

v
30

v
31

v
54

v
67

v
68

v
69

v
70

v
71

v
72

v
73

v
74

v
75

v
76

v
77

v
78

v
5

v
51 v

52

v
56

v
53

v
54

v
55

v
57

v
58

v
59

v
60

v
62

v
61

v
63

v
64

v
65

v
66

v
79

v
80

v
81

v
82

v
34

e
1 e

59
e
19

e
84

e
57

e
71

e
53

e
57

e
64

e
17

e
47

e
4

e
85

e
92

e
41

e
10

e
32

e
15

e
42

e
28

e
37

e
46

e
36

e
54

e
82

e
86

e
89

e
11

e
90

e
33

e
18

e
83

e
52

e
19

e
52

e
19

e
23

e
69

e
39

e
40

e
51

e
20

e
79

e
66

e
72

e
34

e
48

e
78

e
35

e
56

e
87

e
81

e
24

e
9

e
63

e
44

e
43

e
27

e
92

e
5 e

88 e
61

e
13

e
29

e
6

e
67

e
29

e
50

e
93

e
80

e
8

e
45

e
62 e

38

e
30

e
7

e
22

e
14

e
21

e
49

e
49e

94

e
95

e
96

e
16

e
8

e
11

e
31

FS1

FS2

FS3

FS4

FS5

FS6

FS7

FS8

FS9

FS10

FS11

FS12

FS13

FS14

FS15

FS 风速传感器

图 8    东山矿通风网络

Fig.8    Ventilation network of Dongshan coal mine
 
 

4.2　WGAN-div 有效性验证

为了验证 WGAN-div在通风系统不平衡数据处

理的有效性，原始故障样本分别采用：① 原始数据集

Din；② GAN模型；③ WGAN模型；④ WGAN-gp模

型；⑤ 本文所建 WGAN-div模型处理生成新的样本

集 On，使得合样本集 Oex 达到数据平衡，分类算法都

选择 RF模型。本文构建的 WGAN-div模型生成器、

判别器均包含 3个残差块，参数设置见表 6。实验结

±果见表 7，为 10次运行结果的平均值 标准差 (最优

结果加粗表示)。分析表 6可得出：

(1)直接采用 RF分类模型对原始不平衡数据集

进行故障分支诊断，A、Pr、Gmean 和 F1 分数都是最低。

这意味着 RF模型不能准确识别出通风系统不平衡数

据集中的少数类故障样本，因此，使用原始数据集不

能实现对通风系统故障分支的有效诊断。

(2)对比原始数据集，基于 WGAN-div数据增强
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后，A 提升了 17.5%，Re 提升了 2.1%，Pr 提升了 24.2%，

Gmean 提升了 17.1%，F1 分数提升了 14.4%。由此说明，

利用 WGAN-div模型对不平衡的故障数据进行增强，

能够有效提高原始数据的质量，进而提高分类器的判

别性能。

(3)使用 GAN、WGAN、WGAN-gp进行数据增

强后，虽然准确率和 G-mean指标均增大，分类模型对

故障分支的识别能力增强，但是在 F1 分数上却没有

任何明显的改进，分析认为模型扩充了劣质的新故障

样本，影响了分类模型对故障分支诊断的判别。相较

于 GAN、WGAN、WGAN-gp模型，WGAN-div模型

各项评价指标均为最高，A、Re、Pr、Gmean 和 F1 分数分

别为 96.5%、96.2%、96.3%、96.1% 和 96.2%，大幅度

提高了分类模型对故障分支的识别能力，验证了所提

WGAN-div模型在处理不平衡数据时的优越性。

应用 t-分布随机领域嵌入 (t-Stochastic Neighbor
embedding,t-SNE)算法对 WGAN-div模型的样本生

成情况进行降维可视化分析，图 9展示了迭代次数 N
分别 0、100、200、500、800、1 000时模型的生成样本

与真实样本之间的分布情况，图 10展示模型损失函

 

表 5    生产矿井故障样本集

Table 5    Fault sample set in production mine

样本 v′1 v′2 v′3 v′4 v′5 v′6 v′7 v′8 v′9 v′10 v′11 v′12 v′13 v′14 v′15 e′i

1 3.6 5.6 7.6 4.2 3.9 4.1 2.6 10.4 4.7 4.2 3.2 3.8 9.6 4.2 3.2 e85

2 3.6 5.4 7.8 4.1 3.9 4.2 2.4 10.2 4.8 4.2 3.1 3.9 9.5 4.1 3.3 e85
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201 3.5 3.6 7.9 4.1 3.8 7.1 2.6 3.6 4.7 4.3 3.2 8.0 4.3 4.2 3.1 e33

202 3.4 3.5 7.8 4.2 3.7 7.2 2.5 3.7 4.6 4.2 3.1 7.9 4.4 4.2 3.2 e33
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5 119 6.5 5.6 7.6 4.4 3.6 4.4 2.6 0.7 4.5 4.3 3.2 3.8 0.5 4.0 3.1 e92

5 120 6.4 5.6 7.8 4.3 3.6 4.3 2.5 0.6 4.6 4.4 3.3 3.9 0.3 4.2 3.0 e92

 

表 6    WGAN-div 模型参数设置

Table 6    WGAN-div model parameters

生成器 判别器

名称 输入维度 激活函数 滤波器 步长 卷积核 输出维度 名称 输入维度 激活函数 滤波器 步长 卷积核 输出维度

输入噪声 50 — — — — 50 输入层 ×15 1 — — — — ×15 1

全连接层 50 LeakyReLU — — — 426 卷积层 ×15 1 LeakyReLU 3 1 4 ×15 3

残差块1
上采样层 ×3 64 LeakyReLU 64 2 4 ×6 64

残差块1
下采样层 ×15 3 LeakyReLU 16 2 4 ×15 16

卷积层 ×6 64 — 64 1 4 ×6 64 卷积层 ×15 16 — 16 1 4 ×15 16

残差块2
上采样层 ×6 64 LeakyReLU 32 2 4 ×12 32

残差块2
下采样层 ×15 16 LeakyReLU 32 2 4 ×12 32

卷积层 ×12 32 — 32 1 4 ×12 32 卷积层 ×12 32 — 32 1 4 ×12 32

残差块3
上采样层 ×12 32 LeakyReLU 16 2 4 ×15 16

残差块3
下采样层 ×12 32 LeakyReLU 64 2 4 ×6 64

卷积层 ×15 16 — 16 1 4 ×15 16 卷积层 ×6 64 — 64 1 4 ×6 64

卷积层 ×15 8 Tanh 1 1 4 ×15 1 全连接层 426 — — 1 — 1

 

表 7    不同数据增强方法的实验结果

Table 7    Experimental results of different data enhancement methods

数据增强方法 A Re Pr Gmean F1

Oin ±0.790 0.032 ±0.941 0.02 ±0.721 0.102 ±0.790 0.071 ±0.818 0.12

GAN ±0.912 0.068 ±0.940 0.011 ±0.730 0.037 ±0.933 0.013 ±0.820 0.025

WGAN ±0.920 0.021 ±0.943 0.017 ±0.724 0.02 ±0.934 0.024 ±0.813 0.01

WGAN-gp ±0.931 0.018 ±0.936 0.017 ±0.845 0.054 ±0.947 0.02 ±0.892 0.065

WGAN-div ±0.965 0.036 ±0.962 0.104 ±0.963 0.009 ±0.961 0.041 ±0.962 0.064
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数的变化情况。观察图 9、10，随着迭代次数的增加，

WAGN-div模型的损失函数稳定收敛、逐渐平稳，生

成的新样本数据与真实数据分布逐渐交融，生成数据

与真实数据具有很好的相似性，生成数据的质量越来

越高。
 
 

生成数据
真实数据

N′=0 N′=100 N′=200

N′=500 N′=800 N′=1 000

图 9    t-SNE降维数据可视化

Fig.9    t-SNE dimension reduction data visualization
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图 10    WGAN-div损失函数

Fig.10    WGAN-div loss function
  

4.3　RF 有效性验证

为了验证 RF模型能够更有效的对通风系统故障

分支进行辨别，原始样本经过 WGAN-div处理后，选

用了以下经典的集成学习分类模型进行对比：类别提

升树 (CBT)、轻量梯度提升树 (LGB)、梯度提升树

(GBDT)，此外，将文献[7]中提出的通风系统故障诊断

SVM模型也纳入本文的对比实验。各个模型的最优

参数见表 8，各个参数定义见表 2。
  

表 8    分类模型最优参数

Table 8    Optimal parameters of classification model

分类模型 参数设置

CBT ηn=300，Td=3, =0.03

LGB η ωM=100，Td=3， =0.01，Tf=1， =0.8

GBTD ηM=200，Td=2，Mp=2， =0.1，Mf=2

SVM c=100，K=RBF

RF M=50，Td=12，Mp=2，Mf=1
 

为了考察不同的数据生成比率下分类模型的表

现是否具有明显改善，本文将 WGAN-div的数据生成

比率分别调整为 10%、20%、50%、80%、100%。图 11
展示了基于 WGAN-div不同数据生成比率下各分类

模型的实验结果 (10次实验的平均值)，分析如下：

(1)从数据生成比率的角度来看，相较于原始数据

集，数据生成比率为 10% 时，所有模型 Re、Pr、Gmean

和 F1 分数平均提高了 2.7%、0.3%、1.8% 和 1.5%，模

型性能提升不明显。但是，当数据生成比率达到

50% 时，所有模型的 Re、Pr、Gmean 和 F1 分数平均提高

了 19.8%、1.18%、13.4% 和 12%，所有分类模型的性

能提升明显。新数据进一步生成达到 80% 时，模型表

现的改进相对有限，即使数据生成比率达到 100% 时，

各模型的性能达到最优，但是相对于 50% 的生成比率

模型性能提升并不优越，因此当矿井通风系统故障分

支较多时，考虑时间成本可以将数据生成比率设置为

80%～100%。

(2)从分类模型的角度来看，RF模型无论是在原

不平衡数据集还是增广数据集上都表现出明显的优

势。当样本数据达到完全平衡时，相较于原始数据集，

RF模型在 Re、Pr、Gmean 和 F1 评价指标上分别提升了

21.9%、2.7%、11.8%、11.2%。在所有的分类模型中，

传统的机器学习模型 SVM性能要明显弱于集成学习

模型，尽管 SVM模型在 F1指标上的表现可以通过数

据增强得到显著改善，但是其 Gmean 指标并未随着数

据的平衡而明显改进，分析认为数据增强生成的伪样

本具有一定的随机性，导致 SVM表现不够稳定。特

别地，当扩充数据集达到平衡时，与传统的矿井通风

系统 SVM故障诊断方法相比 ，RF模型在 Re、Pr、

Gmean 和 F1 指标上分别提高了 4.7%、2.3%、10.1%、

3.5%。总的来说，本文所提 RF模型适用于矿井通风

系统故障诊断，当训练样本逐渐达到平衡时，RF模型

在 A、Re、Pr、Gmean 和 F1 得分上的表现较其他模型更

具优势。
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课题组在东山矿进行了 2次现场工业应用试验，

考虑到生产安全和矿山的实际情况，通过打开关闭状

态下的风门方式进行故障模拟，第 1次实验在确保东

山矿安全生产的前提下打开了西采区 6D上左一回风

巷的风门 (图 8中的 33号分支)，风门开启后采集该

矿 15个传感器的风速值 (取风门开启后 5 min内各个

传感器的平均值)，把 15个采集到的风速作为输入值，

利用预测模型对故障分支进行预测，预测结果输出为

33。第 2次实验打开了西采区 3号上右一巷的风门

(图 8中的 85号分支)，将风门开启后采集到的 15个

风速传感器值输入模型，预测结果输出为 85，2次试

验故障分支预测结果与工业试验结果一致。 

5　结　　论

(1)从矿井通风系统实际工况下各分支故障概率

不同的角度出发，以简单的 T型通风网络为例，说明

了不平衡数据集对故障诊断模型的影响。建立了

WGAN-div-RF故障诊断模型，有效解决了通风系统

故障数据不平衡的问题，从数据层面提高了分类模型

的特征提取能力，进而提高分类模型的性能。

(2)故障诊断实验以及 t-SNE可视化结果表明，加

入残差块的 WGAN-div模型能够生成高质量的新数

据实现对样本集的扩充，WGAN-div模型的 A、Re、

Pr、 Gmean 和 F1 分数分别为 96.5%、 96.2%、 96.3%、

96.1% 和 96.2%，相较于其他数据增强模型在处理不

平衡数据时更具优越性。

(3)针对通风系统故障诊断高维多分类问题，结合

集成学习中的投票机制对通风网络分支进行分类，所

得结果要优于传统的 SVM模型，其中 RF模型在不同

数据生成比率上各评价指标得分较其他集成模型更

具优势。

参考文献(References)： 

 刘剑. 矿井智能通风关键科学问题综述[J]. 煤矿安全，2020，51(10)：

108−111，117.

LIU Jian. Overivew on key scientific and techniacl issues of mine in-

telligent  ventilation[J].  Safety  in  Coal  Mines， 2020， 51(10)：

108−111,117.

[1]

 范京道，李川，闫振国. 融合 5G技术生态的智能煤矿总体架构及

核心场景[J]. 煤炭学报，2020，45(6)：1949−1958.

FAN  Jingdao,  LI  Chuan,  YAN  Zhenguo.  Overall  architecture  and

core scenario of a smart coal mine in-corporating 5G technology eco-

logy[J]. Journal of China Coal Society，2020，45(6)：1949−1958.

[2]

 JIA J, JIA P, LI Z. Theoretical study on stability of mine ventilation

network based on sensitivity analysis[J]. Energy Science & Engineer-

ing，2020，8(8)：2823−2830.

[3]

 ELSISI  M,  TRAN  M,  MAHMOUD  K,  et  al.  Effective  IoT-based

deep learning  platform  for  online  fault  diagnosis  of  power   trans-

formers against cyberattacks and data uncertainties[J]. Measurement，

2022，190：110686

[4]

 孟宗，关阳，潘作舟，等. 基于二次数据增强和深度卷积的滚动轴承

故障诊断研究[J]. 机械工程学报，2021，57(23)：106−115.

MENG Zong, GUAN Yang, PAN Zuozhou, et al. Fault diagnosis of

rolling bearing based on secondary data enhancement and deep con-

volutional  network[J].  Journal  of  Mechanical  Engineering， 2021，

57(23)：106−115.

[5]

 

Re Pr Gmean F1

Re Pr Gmean F1

Re Pr Gmean F1

Re Pr Gmean F1

Re Pr Gmean F1

Re Pr Gmean F1

0.85

0.90

0.95

0.85

0.90

0.95

0.85

0.80

0.90

0.95

0.8

0.7

0.9

0.7

0.8

0.9

0.6

0.7

0.8

0.9

数
值

数
值

数
值

数
值

数
值

数
值

( d ) 20% ( e ) 10% ( f ) 原始数据集

( a ) 100% ( b ) 80% ( c ) 50%

CBTGBDT LGB SVMRF

图 11    不同数据生成比率下各分类模型的实验结果

Fig.11    Experimental results of different classification models at different data generation rate

4122 煤　　炭　　学　　报 2023 年第 48 卷

https://doi.org/10.13225/j.cnki.jccs.zn20.0303
https://doi.org/10.13225/j.cnki.jccs.zn20.0303
https://doi.org/10.1016/j.measurement.2021.110686
https://doi.org/10.3901/JME.2021.23.106
https://doi.org/10.3901/JME.2021.23.106


 戴金玲，许爱强，申江江，等. 基于 OCKELM与增量学习的在线故

障检测方法[J]. 航空学报，2022，43(3)：378−389.

DAI Jinling, XU Aiqiang, SHEN Jiangjiang, et al. Online fault detec-

tion method based on kernel  incremental  learning and OCKELM[J].

Acta Aeronautica et Astronautica Sinica，2022，43(3)：378−389.

[6]

 刘剑，郭欣，邓立军，等. 基于风量特征的矿井通风系统阻变型单故

障源诊断[J]. 煤炭学报，2018，43(1)：143−149.

LIU  Jian,  GUO  Xin,  DENG  Lijun,  et  al.  Resistance  variant  single

fault source diagnosis of mine ventilation system based on air volume

characteristic[J].  Journal  of  China  Coal  Society， 2018， 43(1)：

143−149.

[7]

 刘剑，尹昌胜，黄德，等. 矿井通风阻变型故障复合特征无监督机器

学习模型[J]. 煤炭学报，2020，45(9)：3157−3165.

LIU  Jian,  YIN  Changsheng,  HUANG  De,  et  al.  Unsupervised ma-

chine  learning  model  for  resistant  variant  fault  diagnosis  of  mine

ventilation system with composite features[J]. Journal of China Coal

Society，2020，45(9)：3157−3165.

[8]

 HUANG D,  LIU  J,  DENGE L,  et  al. An  adaptive  kalman  filter  for

online  monitoring  of  mine  wind  speed[J].  Archives of  Mining   Sci-

ences，2019，64(4)：813−827.

[9]

 HUANG D,  LIU  L,  DENG  L. A  hybrid-encoding adaptive   evolu-

tionary strategy algorithm for  windage alteration fault  diagnosis[J].

Process Safety and Environmental Protection，2020，136：242−252.

[10]

 黄德，刘剑，刘永，等. 矿井通风阻变故障观测特征组合选择试验

研究[J]. 煤炭学报，2021，46(12)：3922−3933.

HUANG De,  LIU Jian,  LIU Yong,  et  al. Experimental  research on

combination selection of  observation feature of  resistance variation

fault  in  mine  ventilation[J].  Journal  of  China  Coal  Society， 2021，

46(12)：3922−3933.

[11]

 周启超，刘剑，刘丽. 基于 SVM的通风系统故障诊断惩罚系数与

核函数系数优化研究[J]. 中国安全生产科学技术，2019，15(4)：

45−51.

ZHOU Qichao, LIU Jian, LIU Li. Research on fault diagnosis pen-

alty coefficient and kernel function coefficient optimization of vent-

ilation  system  based  on  SVM[J].  Journal  of  Safety  Science  and

Technology，2019，15(4)：45−51.

[12]

 倪景峰，李振，乐晓瑞，等. 基于随机森林的阻变型通风网络故障

诊断方法[J]. 中国安全生产科学技术，2022，18(4)：34−39.

NI Jingfeng, LI Zhen, LE Xiaorui, et al. Resistance variant fault dia-

gnosis  method  of  ventilation  network  based  on  random  forest[J].

Journal of Safety Science and Technology，2022，18(4)：34−39.

[13]

 倪景峰，乐晓瑞，常立峰, 等. 基于决策树的矿井通风阻变型故障

诊断及传感器优化布置[J]. 中国安全生产科学技术，2021，17(2)：

34−39.

NI Jingfeng,  LE Xiaorui,  CHANG Lifeng,  et  al. Resistance variant

fault diagnosis and optimized layout of sensors for mine ventilation

[14]

based on decision tree[J]. Journal of Safety Science and Technology，

2021，17(2)：34−39.

 张浪，张迎辉，张逸斌，等. 基于机器学习的通风网络故障诊断方

法研究[J]. 工矿自动化，2022，48(3)：91−98.

ZHANG Lang, ZHANG Yinghui, ZHANG Yibin, et al. Research on

fault  diagnosis  method  of  ventilation  network  based  on  machine

learning[J]. Journal of Mine Automation，2022，48(3)：91−98.

[15]

 ZHAO D,  SHEN Z.  Study on roadway fault  diagnosis  of  the  mine

ventilation system based on improved SVM [J]. Mining, Metallurgy &

Exploration, 2022, 39(3)：983−992.

[16]

 WANG D, LIU J, DENG L, et al. Intelligent diagnosis of resistance

variant multiple fault locations of mine ventilation system based on

ML-KNN[J]. PloS One，2022，17(9)：e0275437.

[17]

 LIU L, LIU J, ZHOU Q, et al. Machine learning algorithm selection

for windage alteration fault diagnosis of mine ventilation system[J].

Advanced Engineering Informatics，2022，53：101666.

[18]

 赵丹，沈志远，刘晓青. 基于 OCISVM的矿井通风系统在线故障

诊断[J]. 中国安全科学学报，2022，32(10)：76-82.

ZHAO Dan, SHEN Zhiyuan, LIU Xiaoqing. Online fault  diagnosis

of mine ventilation system based on OCISVM[J]. China Safety Sci-

ence Journal, 2022, 32(10)：76−82.

[19]

 ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein GAN ad-

versarial networks[C]//Proceedings of the 34th International Confer-

ence  on  Machine  Learning  (ICML).  Australia： PMLR  70,  2017：

214−223.

[20]

 GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved train-

ing  of  wasserstein  GANs[C]//Proceedings  of  the  31st  International

Conference  on  Neural  Information  Processing  Systems.  United

States：Curran Associates Inc, 2017：5767−5777.

[21]

 WU  J,  HUANG  Z,  THOMA  J,  et  al.  Wasserstein  divergence  for

GANs[C]//Proceedings of  the  15th  European  Conference  on  Com-

puter Vision. Germany：Springer, 2018：653−668.

[22]

 HE K, ZHANG X, REN S,  et  al.  Deep residual  learning for  image

recognition[C]//Proceedings of  2016  IEEE  Conference  on   Com-

puter  Vision  and  Pattern  Recognition.  United  States： IEEE,  2016：

770−778.

[23]

 殷豪，丁伟锋，陈顺，等. 基于生成对抗网络和纵横交叉粒子群算

法的光伏数据缺失重构方法[J]. 电网技术，2022，46(4)：1372−

1381.

YIN Hao, DING Weifeng, CHEN Shun, et al. Reconstruction meth-

od for missing data in photovoltaic based on generative adversarial

network  and  crisscross  particle  swarm  optimization  algorithm[J].

Power System Technology，2022，46(4)：1372−1381.

[24]

 MARINA S,  GUY L. A systematic  analysis  of  performance  meas-

ures  for  classification  tasks[J].  Information Processing  &  Manage-

ment，2009，45(4)：427−437.

[25]

第 11 期 　赵　丹等：面向不平衡数据集的矿井通风系统智能故障诊断 4123

https://doi.org/10.13225/j.cnki.jccs.2017.1693
https://doi.org/10.13225/j.cnki.jccs.2017.1693
https://doi.org/10.13225/j.cnki.jccs.2019.1093
https://doi.org/10.13225/j.cnki.jccs.2019.1093
https://doi.org/10.13225/j.cnki.jccs.2019.1093
https://doi.org/10.1016/j.psep.2020.01.037
https://doi.org/10.13225/j.cnki.jccs.2020.1885
https://doi.org/10.13225/j.cnki.jccs.2020.1885
https://doi.org/10.13272/j.issn.1671-251x.2021120093
https://doi.org/10.13272/j.issn.1671-251x.2021120093
https://doi.org/10.1371/journal.pone.0275437
https://doi.org/10.1016/j.aei.2022.101666
https://doi.org/10.13335/j.1000-3673.pst.2021.0694
https://doi.org/10.13335/j.1000-3673.pst.2021.0694

	1 处理不平衡数据集的改进模型
	1.1 通风系统故障数据不平衡分析
	1.2 传统的GAN模型
	1.3 WGAN-div模型
	1.4 残差块

	2 基于WGAN-div-RF的通风系统故障诊断
	2.1 RF分类模型
	2.2 整体构架及流程
	2.3 评价指标

	3 不平衡数据对故障分支诊断影响实验分析
	4 生产矿井实例实验分析
	4.1 数据准备
	4.2 WGAN-div有效性验证
	4.3 RF有效性验证

	5 结　　论
	参考文献

