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Intelligent fault diagnosis of mine ventilation system for imbalanced data sets
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Thermo-motive Disaster and Prevention, Liaoning Technical University , Huludao 125105, China)

Abstract: It is of great significance to determine the location of fault branch timely and accurately to ensure the reliability
and safety of mine ventilation system. To solve the problem that the traditional machine learning model has the poor dia-
gnostic ability and generalization ability due to the imbalance of sample data in mine ventilation system under actual
working conditions, a WGAN-div-RF fault diagnosis model is proposed. Taking a simple ventilation network as an ex-
ample, the fault data sets with the imbalance ratios of 2 : 1,5 : 1, 10 : 1, 20 : 1 are constructed, and the impact of imbal-
anced samples on the ventilation system fault diagnosis is analyzed indepth. The Wasserstein divergence for GANs

(WGAN-div) is built, and the residual blocks are added innovatively to improve the quality of the generated data and ex-
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pand the original sample set. Combined with the RF model, the fault diagnosis of ventilation system is realized. Taking the

ventilation system of the Dongshan Coal Mine as the experimental object, the comparative experiments are carried out re-

spectively with different data enhancement models, different classification models, and different data generation rates. The

effectiveness of the model is evaluated with various indexes and t-SNE visualization. The results show that the data gener-
ated by the WGAN-div model with residual blocks has a good similarity to the real data. Compared with GAN, WGAN,
and WGAN-gp, the WGAN-div model is superior. After applying the WGAN-div model for data augmentation, the per-

formance of the machine learning classification model is significantly improved. When the expanded data set is balanced,

compared with other integrated models and the commonly used SVM model for mine ventilation system fault diagnosis,

the RF model is superior in R,, P,, Gy, and F; indexes.

Key words: mine ventilation system; fault diagnosis; imbalanced data; generate adversarial network; random forest
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Fig.1 Schematic diagram of data imbalance
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Table 3 RF model parameters
LTS SRR BN LYIES SR
T, M=30, T=25, M=2, M1 D, M=10, T=12, Mp=1, Ml
T, M=35, T30, M=2, Mgl D, M=20, TF18, Mp=1, Ml
Ty M=100, T,/=50, M,=2, M=l D, M=50, T30, M=1, M=l
Ty M=100, T&=50, M,=2, M1 D, M=50, T30, My=1, M=l
R4 T, ERABBMEERE
Table 4 T, simulation fault sample set
B v v, v v, v v ¢
1 5.326 2.182 2.765 0.234 3.614 2418 4.581 2
2 5.235 2.112 2.452 0.211 3.871 2.563 4.113 2
101 5.124 1.360 3.621 2.395 5.364 4.261 3.693 4
200 4.590 1.329 3.262 2.151 5.238 4.517 2.581 4
201 4.020 4.670 2.152 3.240 2.69 1.266 3.657 5
299 4.962 2.824 2.350 1.325 3.201 2.345 3.65 6
300 4.620 3.622 2.103 2.120 2.590 2.125 2.326 6
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Fig.8 Ventilation network of Dongshan coal mine
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Table 5 Fault sample set in production mine
AR v vy Vi vy Vs v vy vg v Vi Vi Vi Vis o Vi Vs ¢
1 3.6 5.6 7.6 42 3.9 4.1 26 10.4 47 42 32 3.8 9.6 42 32 egs
2 3.6 5.4 7.8 41 3.9 42 24 10.2 48 42 3.1 3.9 95 41 3.3 egs
201 3.5 3.6 7.9 41 3.8 7.1 26 3.6 47 43 32 8.0 43 42 3.1 e
202 3.4 35 7.8 42 3.7 72 2.5 3.7 4.6 42 3.1 7.9 4.4 42 32 e
5119 6.5 5.6 7.6 44 3.6 4.4 2.6 0.7 4.5 43 32 3.8 0.5 4.0 3.1 €9
5120 6.4 5.6 7.8 43 3.6 43 2.5 0.6 4.6 4.4 3.3 3.9 0.3 42 3.0 €9,
#R 6 WGAN-div EEISHIFE
Table 6 WGAN-div model parameters
A AR FIRN S
HR WAYEE  BORREC BB SR B b4 HR HAYEE PR eREC RIS K BEUX f e
Hir AW 50 — S — 50 PN 15x1 — - - = 15x1
R 50  LeakyReLU — — — 426 LRZE 15X1  LeakyReLU 3 1 4 15%3
i EREEJZ 3X64  LeakyReLU 64 2 4 6X64 PRFEZE I5X3 LeakyReLU 16 2 4 15x16
B2 BeZzER1
HIZE  6x64 — 64 1 4 HBRZE 15x16 — 16 1 4 15x16
‘ FRFEE 6X64  LeakyReLU 32 2 4 12x32 TRFEE  15X16  LeakyReLU 32 2 4 12x32
L= L=
LBRUZ 12x32 _ 3 1 4 12x32 BRZ 12x32 _ 3 1 4 12x32
R FRFEZE 12X32 LeakyReLU 16 2 4 I5x16 TRFEZE  12X32 LeakyReLU 64 2 4 6x64
P23 FRZEHR3
EFUZ 15x16 _ 16 1 4 15%x16 HERZE 6x64 _ 64 1 4 6X64
HBRZ 15%8 Tanh 1 1 4 15x1 Uz 426 — — 1 — 1
K7 TREAHELRF AR
Table 7 Experimental results of different data enhancement methods
G DT RN Y R, P, Goean Fy
Oin 0.790+0.032 0.941+0.02 0.721+0.102 0.790+0.071 0.818+0.12
GAN 0.912+0.068 0.940+0.011 0.730+0.037 0.933+0.013 0.820+0.025
WGAN 0.920+0.021 0.943+0.017 0.724%0.02 0.934£0.024 0.813£0.01
WGAN-gp 0.931+0.018 0.936+0.017 0.845+0.054 0.947+0.02 0.892+0.065
WGAN-div 0.965+0.036 0.962:+0.104 0.963::0.009 0.961:+0.041 0.962::0.064

Ja, AT T 17.5%, R AETHT 2.1%, P 2T+ T 24.2%,
Groean TETH T 17.1%, F) BT T 14.4%. FHILUEI,
FIIFH WGAN-div #5750 X5 A - 114 55 B 5l 20 47 34
BRI AU e D L 5 190 S, 0 T 12 40 S 2 1 )
HPERE

(3) ffi F§ GAN. WGAN, WGAN-gp #F 17 5 4 13
IR T, BIRUER R G-mean FERRIYIE K, 3 SSRAINT
B 3 S TR R T G5k, ARURAE Fy B EEA
AT BA 2 A e, S BT AR R 38 T 45 I 1 e
FEAS, MR T 43 AR B 43 S 2 W) o AR

LSIA
s 5

F GAN, WGAN, WGAN-gp £ %, WGAN-div 1% %Y
BN AR IR, AL Re Pr Goean F1 Fy 538053
M 96.5%. 96.2% . 96.3%. 96.1% Fil 96.2%, K i &
P& T AT FEBA N R A S A FO R T, SR T T iR
WGAN-div A7 A PSS S5 d0 At A e

i =53 A BE MLk A (t-Stochastic Neighbor
embedding,t-SNE) 5. % XF WGAN-div 5 5 fit) B A 4=
A B HEATREAE T AL S AT, (BT 9 SR TR B v
2351 0. 100, 200, 500, 800, 1000 FHAE A fY A bR A
SRESHARZ MM A E O, B 10 R BRI K o
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Fig.9 t-SNE dimension reduction data visualization

5t G loss

ik

04} D _loss

ik
(=]
T

100 200 500 800 1000
AR EL

K10 WGAN-div 125 ik

Fig.10 'WGAN-div loss function

4.3 RF BMHEIE

T B UE RF AR R A% B A 2801 %o 38 XU R e e
O ST HER, IR REAR L WGAN-div 4bHL 5, i
FHT DUF 2 M 48 e 2] o RS HEA 70T b 28002
FB (CBT). & 2 46 B 42 FH A (LGB). B B2 42 7+ 4
(GBDT), LAk, 5 SCHR[7]H 48 (3 XU R Sk b i2 187

ok

SVM F BRI AR SRS HESES . 25 AR Y B AL
SR 8, KASHUE LI 2.
RS SEEBEMSH

Table 8 Optimal parameters of classification model

SrRAEY SRR
CBT n=300, T,=3,7=0.03
LGB M=100, T3, =001, T=1, ©=0.8
GBTD M=200, T2, My=2, n=0.1, M2
SVM =100, K=RBF
RF M=50, TF=12, M=2, M=l

R T SN B EE AR A RN A A Y R
PR A R MGE, A SCH WGAN-div A6 A 1t
FERA % R 10% ., 20% . 50% . 80%. 100%. & 11
&R T 3T WGAN-div AS [F 86 A2 bl bR T 46932
BRI SEHR 2R (10 YEESR T I9MH), A T

(1) MR A= LR 0 A B R, AR T IR s A
B BIEA LR R 10% B, FTA R R, Py Goean
R, BRI E T 2.7%. 0.3%., 1.8% 1 1.5%,
RIVEREAR T A Bt o [H R, B0 A R e A F)
50% B, FRA BRI Re\ Py Grean M1 Fy 53 B354
T 19.8%, 1.18%. 13.4% F1 12%, i 43 2RI 1) 7
REPETHA &, B Bds e —20 A ik 21 80% B, il F
IR SCHEAR XS A R, BPAEECHE A i Rk 3 100% B,
AR P BEIA B B A, (HRAHXT T 50% YA A
REFYPEREPE T ALK, PRI 2 e X 2R e 8 e 73
KEEZT, 5 R 1] AR T LUK A B L R R
80%~100% .

(2) M\ L RY Y £ R F , RE BB TGI8 2 1 5t
AP AR IR R 1 ) B AR AR I W R A A
P, U A R 58 2 VAT, AR T R IR BE AR,
RF BARILE R, Prv Grean 1 Fy VPN TEAS L2050 4 T T
21.9%. 2.7%. 11.8%. 11.2%. {EFTA W4 2pimih,
LG RS2 ST B SVM PEREEE B B 58 T4 12 >
R, R SVM RERITE F1 F545 1 A FE B0 AT LU 1 %
o b i A5 3 i 2 0, (HJR . Gean TEAR I AR BEE 2L
e P - T B S A, oA Ry SR 4 i A B A A
AREA —E WBELYE, 33 SVM RIAETE .+
SH, S SR AR ALk B A, 5L g n e R X
A Y0 SVM B 12 Wi J7 15 HH L, RF AL AL 7E R, P,
Groean W1 F 4845 L3 03 & T 4.7%. 2.3%. 10.1%.
3.5%. RSRUL, ASCHTHE RF BOAGE AT 38 X
R BEL W, MU GRFE ARG 8 BT, RF B
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Fig.11 Experimental results of different classification models at different data generation rate
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