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Enhancement of bioconversion of coal to methane by graphene

ZHOU Yixuan', SU Xianbo">**, ZHAO Weizhong', WANG Qian"?, YU Shiyao', WANG Lufei'

(1.School of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China; 2. Unconventional Gas Research Institute, Henan Poly-
technic University, Jiaozuo 454000, China; 3.School of Energy Resources, China University of Geosciences, Wuhan 430074, China; 4. Collaborative In-
novation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Jiaozuo 454000, China)

Abstract: The research of enhancing biomethanation of coal has been paid much attention, which is an effective measure
for increasing coalbed methane production. Adding conductive material to the digestive system can effectively accelerate
direct interspecific electron transfer and increase methane production, which has great potential in enhancing the anaer-
obic digestion of organic matter. In this study, long-flame coal was used as the substrate to construct an anaerobic diges-

tion system. The effect of the addition of graphene on biomethane production was discussed from the aspects of cumulat-
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ive methane yield, the changes of key intermediates in the liquid phase, the microbial community structure, the methane
metabolic pathway, and the changes of surface functional groups in residual coal after anaerobic digestion. The results
showed that adding 0.4 g/L of graphene to the anaerobic digestion system based on coal effectively enhanced the entire an-
aerobic digestion process, not only enhanced methane production, but also brought forward the peak of methane produc-
tion. At the early stage of digestion, the activities of hydrolytic bacteria (Paraclostridium) and hydrogen-production and
aceogenic microflora (Alcaligenes and Sphaerochaeta) were enhanced, and sufficient nutrients were accumulated in the
early stage. At the peak of methane production, the abundance of Methanoculleus decreased while the abundance of Meth-
anosarcina significantly increased after the addition of graphene. The [ subunit and yd subunit of acetyl-coa
decarbonyase/synthase, as key enzymes in the acetic acid synthesis pathway, increased by 233.54% and 3.32%, respect-
ively. This significantly increased the abundance of Methanosarcina and mainly produced methane in the form of acetic
acid nutrition. The abundance of Geobacter and Anaerovorax bacteria that can use ethyl acetate increased, and the Geo-
bacter with high abundance were likely to DIET with Methanosarcina by bioelectric connection assisted by graphene.
This electron transport mode accelerated the formation of biomethane to some extent. The carbonyl carbon (C=0) and
carboxyl carbon (COO—) on the surface of residual coal decreased by 42.8% and 49.5%, respectively, after the addition of
graphene, indicating that graphene effectively promoted the degradation of coal by microflora. The addition of graphene

improves the activity and degradation efficiency of microflora, speeds up the process of anaerobic digestion, provides

abundant substrate for methanogenic microflora, and improves methane production.

Key words: coal; biomethane; graphene; anaerobic digestion; direct interspecies electron transfer
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Table 1 Proximate analysis and ultimate analysis of

coal samples %

TEEMF
Hgar  Naar  Odar

Tl s
My Ag Vaat FCaqar  Caar

HERE

CYM 6.63 1337 4701 5299 7644 516 173 16.67
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Table 2 Characteristic parameters of graphene
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Fig.1
methane and carbon dioxide in graphene digestion system with

different additive levels
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Table 3 Stage gas production and cumulative gas
production of methane in digestion systems with different

graphene additions

e WrBE A (mL - g ) B R

(215} _
4d 8d 12d 16d 20d 24d 28d 32d (mL-gh

XTHEZH 0.04 0.15 036 0.96 1.51 0.59 0.28 0.01 3.89
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Table 4 Stage gas production and cumulative gas production of methane in the anaerobic digestion system with

graphene and the control group

BB Sk /(mL - g7

B iRt/ - g )
4d 8d 12d 16d 20d 24d 28d 32d
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x5 HAMAEHEMNIBEARELBRSGHRA™ 140 000 [PI.
— JRAO i E4
kT &R E 4R 120 000 - CC.CoH
c—O
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Fig.5 Trends of liquid phase products in the digestion system with

graphene and the control group
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Table 7 Standard quantifications of liquid phase products in the digestion system with
graphene addition and control mg/L
X IRZH A1 BB
s
6d 12d 18d 24d 30d 6d 12d 18d 24d 30d
R 9.39 5.55 4.07 3.68 3.73 6.29 6.11 6.19 3.28 6.08
R 33.02 90.18 48.09 34.33 73.99 100.74 53.06 10.12 14.65 15.85
R 20.86 59.30 51.22 12.88 38.57 66.52 45.19 12.22 22.93 24.12
TR 111.67 122.64 110.02 69.60 14.19 144.61 113.50 57.45 16.81 9.47
P 2.13 1.47 1.28 1.11 1.00 1.99 1.36 1.14 1.05 0.94
a3 6.62 3.26 2.76 2.15 1.37 2.96 2.62 1.65 1.34 1.31
Tk 1.12 1.12 0.71 0.94 1.10 1.81 0.75 0.72 0.83 0.94
RVAYSH 0.90 0.88 0.51 0.71 1.04 1.31 0.60 0.44 0.61 0.86
RWAVSH 1.06 1.05 0.65 0.89 1.15 1.55 0.76 0.69 0.78 0.99
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Fig.6 Diversity and abundance of bacteria and archaea in the digestion system with graphene and the control group
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Fig.7 Community structure of bacteria and archaea in the digestion system with graphene and the control group
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Table 8 Genes of enzymes associated with three methanogenesis pathways and their relative abundance
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Fig.8 Methane metabolism pathway in the anaerobic digestion system with graphene and control group
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Fig.9 Enhancement mechanism of graphene to anaerobic digestion system
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