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Abstract: In the process of underground excavation, the surrounding rock is in a very complex stress environment, espe-
cially under the influence of its anisotropy, the occurrence of dynamic disaster is hidden. In this paper, the loading and un-
loading tests of sandstone in different principal stress directions were carried out by using the true triaxial unloading dis-
turbed rock test system. The mechanical properties and failure characteristics of true triaxial under different principal

stresses were studied, the energy evolution mechanism in other directions induced by loading and unloading of different
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principal stresses was analyzed. Results showed that under the influence of rock mass secondary stress anisotropy, during
the cyclic loading and unloading process of the first principal stress, the strain in other directions shows opposite deforma-
tion. The volumetric strain compresses first and then expands, and the final volumetric strain shows a macroscopic phe-
nomenon of expansion. When the third principal stress of high confining pressure rock mass is unloaded, the first princip-
al stress produces a compression deformation, while the second and third principal stresses produce an expansion deforma-
tion. The deformation of the second principal stress is less than that of the third principal stress, and the deformation in un-
loading direction changes from linear elastic state to elastic-plastic nonlinear state. The accumulated energy of rock mass
is a great difference between the first principal stress unloading and the third principal stress unloading. The energy vari-
ation characteristics of unloading in the dominant direction determine the energy accumulation and release law in the oth-
er two induced directions. The limit stored energy of the third principal stress unloading rock decreases, and the second
principal stress accelerates the rock failure with the increase of the first principal stress, which verifies that the rock is easi-
er to be destroyed by unloading than by loading. The higher the unloading rate of the third principal stress, the higher the
energy released and the lower the dissipated energy, and the lower the energy density and total accumulated energy dens-
ity in the unloading direction of rock mass. The main cause of dynamic accidents is the accumulation and release of en-
ergy in rock mass. The secondary anisotropy of rock mass has a great influence on the ultimate stored energy of rock mass.

The study on the influence characteristics of three-dimensional loading and unloading secondary stress on the ultimate

stored energy of rock mass provides a reference for preventing rock burst.
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Fig.1 Failure characteristics of surrounding rock during loading and unloading during roadway excavation
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Fig.2 True triaxial disturbance unloading rock test system
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Table 1 Parameters of the test program

W4 /M Pa
Py ey 1) . - . o iE/MPa o HIZ/MPa o HIZ/MPa JNZRE/ (mm - min ) EHIZHER/(mm - minY)

15 30 10 5 EsL 27N 0.1

25 30 10 5 WEIR{E90% 30 0.1 0.1
35 30 10 5 WHIMES5% 30 0.1 0.1
45 30 10 5 IMES0% 30 0.1 0.1
5% 30 10 5 WEIR{E90% EY 27N 0.1 0.1
65 30 10 5 WIME85% EXZON 0.1 0.1
75 30 10 5 A 80% EX22 0.1 0.1
8% 30 10 5 WEIR{E90% EY 27N 0.1 0.5
9% 30 10 5 BIAE90% EY 27N 0.1 1.0

SR FEVEL N 7 0 8358 fan 282, it s SR VA7 % 38 B 4 A 7
. #H#

T 1. B, RAME I HENAR 3 45 ] (14 1
F3 [FIsE 35 2040 4 L, AE4DL T AR R A i 1 )
RAS, SRI5 R FEALRS 3% 0.1 mm/min IR K F2)
FIHERIR.

T2, EHE MEEWIEN IPIRE (5 HE 1H
[6]), B a8 K 0 1 2 1 5l i (B IR Y
90% . 85%-. 80%, $A 5 1R K FE N ) BHIUR N ), e
Je PN AR AR SN ) B AR, i g A e i A7 A ik
N 0.1 mm/min,

T 3. HHE MBI N IR (5 HE 1
EDNEVEYIIE 3 SN R =R W e o E 3[R 37 N (L]
90%. 85%. 80%, SR J= 15/ N F 0 7 IR,
HIZEGT FAE A AL A 0.1 mm/min,

T 4. BHE MEEWIEN IR (5 HE 1M
I, B 5 R AR 67 7% 305 0.1 mm/min 1 2% K 3500
FE 1 SR FERY 90%, KI5 0510 0.1, 0.5,
1.0 mm/min 438 R E1 35/ 0 ) BRI

3 BEZHmHABEEEERESH

HY T A 1 45 ) S, BE A 20 RS AR 1L,
AN J5 1) b R EE | AR TS H B A R AR 25 ek
e H S o B I 2 X o, Fll o3 BRI B2 W, om B SN 2855 o
Flo W AR 22 5
3.1 BAERAMEEN DRI

R T AT AN o NI FE X o, Bl o 5%
Wi, 43 S A7 4 P R 43RG« [R) BRI R ALY 90%
85%. 80% JEAIMEIZ LK, Ao 5544 T, ouFl1
o3 7 1) g =0 7% FR e O REAIE , P61 4 Sl AN ) in i) 28 2%
PR IRRERY I -0 AR e FRh e (R 28 LURRAR ML, g

B R ), Hfe ey es ey RN —, . ZEMN T
7 1] 4 07 2 FA RN A2

t & 4 T LLE 78 B = SRAE R T, 243Kk
B—. .. = ERN S5 518 30, 10, 5 MPa i, #E1TER
— BN SRR IR AR IR R A 111.9 MPa., Bl
o YA, FE o T VAR A TR 6 AR T, oy fllors T 1) W)
A FREMCIRES, e B b /N Fese W 71— AR 4 AT A
KI5 RUTE 5 AP BE: 280G kAR | 28GR
SR KR HEUMEB G A TREY R W50
BB, 0547 25 0 0V S FEHIRE ORI B N 8 e r
T RNyt 40 0y F 54728 R K, 2 I il 4
12 BRI AT A 447

M — TR e, = 1 SR IR
B 90% ., 85%. 80% J&, F-HIZk o B W45 1T, 0k
AR INER AR R Ty FIRI Nk th 2l 3,
JO7 1= AR 2 H BRH S [RITEER; & Flle, , exfO9T AL T
A5 101, PRFRN AR ey 2607 T S R4 P IK A /2, HL
e AR RN 28 B HH IR 110 72 IR 42, T BN AT 386
Bithi; Ho #ok, Egr=E sk, htal LA -
FEA RS ) S RS2 T, 55— FE 0TI BRAR, Hoax
[ (4 o7 A8 E A R ARIRAS, A A R R

e AN, A IR B AR 4 i PR
25, G —BARL M SRR A 1k PR 1 2 04 (R 5 A
PR ZEBLBBE, 55 A B i R i o 222 17 15 R 40 i 4
i, B R A A B AL I G2 s A5 — = N IR PR i)
T, BEA S — R TN, A AR KA TR H 2
JR BRI, T R R TS 1T BE ALV, o e 3E 2 Bt
TG, LG SR R S G N T R, B T
HARER S BIRER 80% TEHINEIZG, Wl
HURSREERG N T 2 MPa, A E RIS, 75 90% .
85% PEIAIMENZER, PUE TR LR T 6 MPa; X & T



%41 VFSCRA S =N A A 45 18] Pk K g Ak ML) 1507
- L120
£ - £ W
2 2
R R
] ®
|
40 &y ¥
25 -20 15 =10 -5 0 5 10 15 20 25 35 28 21 -14 -7 0 7 14 21 28 35
MAF/107 NAF/1073
(a) 4= P I 8 (b) BEIE 90% T&H InEN 2,
120
/ﬂ »\"
3 1100
g | g
; il g
R R
& J &
)ﬁ w\ ']ﬁ
® i ey &
[ &
L .

30 24 18 -12 -6 0 6 12 18 24 30
NAF/107
(c) WA 85% A H i £

=25 =20 -15 -10 -5 0 5 10 15
RiAE/107
(d) BIRE 80% TEH N EN

4 PEIAINEIZEN - AR i 28

Fig.4 Cyclic loading and unloading stress-strain curves
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Fig.5 Stress-strain curves for graded loading and unloading
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Fig.13 Energy evolution for different third principal stress unloading rates
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