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Landform reshaping optimization of inner dump based on hydrological fusion in
grassland open-pit coal mine
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Abstract: The landform of the inner dump in the grassland open-pit coal mine is affected by factors such as the shaping
method and the amount of earthwork in the mining-dumping-reclaiming activities, and it faces ecological and environ-
mental problems such as landscape fragmentation and soil erosion. Based on the existing technologies and the team's
achievements, in order to further realize the integration of the reshaped landform and the surrounding hydrology in the
mining area, an optimization model for the delineation of the mining complex sub-area based on the hydrological preserva-

tion surface (HPCS) was constructed. Taking the inner dump site in the Heishan open-pit coal mine in Xinjiang as an ex-
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ample, the optimized near-natural design landform under HPCS (MNNDL HPCS) was used as the experimental group,
and the NNDL HPCS, the original natural landform (PNL) and the traditional design landform (TDL) were used as the
control group. Combined with spatial superposition analysis and geomorphological evolution simulation technology, the
optimization effects of the MNNDL HPCS in hydrological integration, earthwork allocation and soil water erosion resist-
ance were evaluated. The result shows: (D in the delineation of the mining sub-area, except for the adjustment of the loca-
tion of the mining sub-area in the MNNDL_HPCS, the positions of the rest of the areas remain unchanged. 2 Compared
with hydrological fusion, with the PNL as the benchmark, the MNNDL HPCS has the best visual effect. Specifically, the
spatial overlap rate of hydrological channels is 52.84% higher than that of the NNDL HPCS and 66.66% higher than that
of the TDL; the index of hydrological fusion rate is 7.04% higher than that of the NNDL HPCS and 18.11% higher than
that of the TDL. (3 Compared with earthwork deployment, the average earthwork distance of the MNNDL HPCS is
about 0.98 m/m’ shorter than that of the NNDL_HPCS, and about 4.93% higher than that of the TDL. Therefore, the earth
moving cost is slightly lower than that before optimization. (4) Comparing soil water erosion resistance, the

MNNDL HPCS can reduce the total amount of soil water erosion by about 31.65%, 56.86% and 80.59% over 10 years
compared with the PNL, NNDL HPCS and TDL, respectively. In addition, the average slope mitigation (0.28°) is the
main reason why the soil water erosion resistance of the MNNDL HPCS is better than that of the PNL, which is realized
by the slope mitigation optimization module in the HPCS model. The research results can restore the original runoff chan-
nels and original landforms and landscapes in the mining area to the maximum extent, improve the stability of ecological

restoration in the mining area.
Key words: open-pit mine; inner dumping site; landform reshaping; hydrological fusion; mine ecological restoration
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Fig.1 Schematic diagram of the technical route of the optimization model for the delineation of mining areas and

refilling areas based on HPCS
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