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Advanced process control of coal gasification industrial process based on
multiple models switching control

ZHANG Tianchen, ZHAO Zhong

(College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China)

Abstract: Coal gasification is a crucial unit of coal chemical production process. Coal and oxygen are used as the main re-
action raw materials in the coal gasification process and the crude syngas is generated by chemical reaction under high
temperature and high pressure. Compared with the petrochemical industry, it is more difficult to implement advanced pro-
cess control (APC) in the coal gasification industrial process because of the time varying disturbance of coal quality. The
time varying disturbance may lead to the mismatch of the APC model that could cause some large fluctuations of key pro-
cess indices (oxygen coal ratio and gasifier temperature). In view of above problems, based on the actual production of
coal-water slurry gasifier, a dynamic matrix control method based on multiple models switching is proposed in this paper.
The off-line process data under different coal quality conditions are used to construct a multiple working model set for on-

line dynamic matrix controller. The intergral squared error-total squared variation (ISE-TSV) is used as the controller per-
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formance index to monitor the controller performance and model mismatch and the multiple model prediction value is
used as the model switching criterion. The advanced control of the coal gasification unit is realized through the multiple
models switching dynamic matrix control. According to the proposed method, a multiple model switching control soft-
ware Wisdom-Controller has been developed. The Wisdom-Controller has been tested on the UniSim simulation platform
and applied to the real industrial gasifier. The simulation and industrial application results have verified that the proposed
method can accurately control the change of oxygen-coal ratio and gasifier temperature under the condition of fluctuating
coal quality conditions. Compared with the traditional manual operation, the mean square control deviation of oxygen-coal
ratio and the gasifier temperature have been reduced obviously with the proposed advanced process control method based
on multiple models switching. Also, the specific coal consumption has been reduced, the synthetic gas output has been in-
creased and the economic benefit of the unit has been significantly improved. The industrial application results have veri-
fied that the proposed method provides a new and effective way to realize the advanced process control of coal gasifica-

tion industrial process.
Key words: coal gasification; working condition change; multiple models switching; dynamic matrix control; ad-
vanced process control
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Fig.1 Technological process of Texaco coal gasification
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Fig.12 Control effect of single model algorithm on coal quality change
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Table 4 Comparison of variance of variables, specific coal consumption, gasified product gas volume

before and after APC application
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