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Determination method of fatigue strength and precursors of fatigue failure of
porous weakly cemented siltstone
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(1. Beijing Key Laboratory of Urban Underground Space Engineering, University of Science and Technology Beijing, Beijing 100083, China; 2. Civil and
Resource Engineering School, University of Science and Technology Beijing, Beijing 100083, China)

Abstract: In order to study the fatigue behavior of porous weakly cemented siltstone, a quantitative calculation method of
characteristic stress was established based on uniaxial step loading and unloading tests of siltstone. Then uniaxial cyclic
loading and unloading tests of constant amplitude were carried out to study the volumetric strain, bulk compliance, and
acoustic emission evolution of siltstone where the upper limit stress was in different stress ranges. The new method separ-
ates volumetric strain into the linear elastic strain of solid-phase dominated by rock skeleton, the non-linear elastic strain

of gas-phase dominated by void, and the irreversible plastic strain. The peak points of gas-phase and plastic volumetric
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strain are taken as crack closure stress and crack initiation stress, besides the points of gas-phase volumetric strain and total
volumetric strain changes from positive to negative are taken as crack damage stress and absolute dilatation stress, solving
the problem that the calculation of characteristic stress is affected by subjective factors. The crack damage stress and abso-
lute dilatancy stress determined by the new method can be regarded as the threshold stress of low-cycle and high-cycle fa-
tigue failure. When the upper limit stress is lower than the crack damage stress, the continuous friction and slippage
between the skeleton particles and the microstructure rearrangement under cyclic loading and unloading result in the speci-
men being gradually compressed. As the times of cyclic loading-unloading increase, the residual volumetric strain, bulk
compliance, and cumulative acoustic emission count tend to be stable. When the upper limit stress is higher than the crack
damage stress, due to the generation of a large number of cracks, the residual volumetric strain and bulk compliance con-
tinue to decrease while the cumulative acoustic emission count continues to increase, resulting in a fatigue failure of the
specimen. The change of bulk compliance from positive to negative can be regarded as the early precursor of fatigue fail-
ure. The number of acoustic emission events N,; and k are approximately in a logarithmic-linear relationship. On this
basis, it is proposed slope b, to describe the fracture pattern. The sudden increase of b, can be regarded as the early pre-
cursor and critical precursor of fatigue failure.
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Fig.1 Mineral composition of siltstone
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Fig.2 Meso-structure of siltstone
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Table 1 Uniaxial incrementally loading and unloading test
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Fig.6 Stress-strain curves and characteristic stress of siltstone under uniaxial incrementally loading-unloading (S-2)
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Table 2 Characteristic stress of siltstone

ENES TR S-2 s-3 S-4 FHE
M40 oce/MPa 10.60 11.94 10.45 11.00
Ja 4% Jjori/MPa 14.16 14.68 14.26 14.37
BN F10 o/ MPa 2730 2795 27.86 27.70

HKH 220 S0 ag/MPa 29.54 31.19 31.37 30.70

V(RN J)o¢/MPa 35.65 36.22 35.18 35.68
Tec/ot 0.30 0.33 0.30 031
oci/of 0.40 0.41 0.41 0.41
odf/ot 0.77 0.77 0.79 0.78
oad/0¢ 0.83 0.86 0.89 0.86
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Table 3 Uniaxial cyclic loading-unloading results of siltstone
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Fig.11 Bulk compliance under uniaxial cyclic loading-unloading
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