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Impacts of regreening on soil microbial community and its assembly process in
open-pit mining area of the Loess Plateau
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Abstract: Vegetation restoration is an important indicator of ecosystem health in a mining area. Understanding the impact
of vegetation restoration on the characteristics and assembly process of soil microbial community is very important to ex-

plore the resilience and self-sustaining mechanism of the restored ecosystem in a mining area. Therefore, this study uses
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MiSeq high-throughput sequencing and zero model to detect the composition of soil microbial communities, the character-
istics of molecular ecological network, the key flora and its assembly mechanism in the shrubs (BL), coniferous forests
(CF), broad-leaved forests (BF), mixed forests (MF), that have been reclaimed for 18 years in Antaibao open-pit mining
dump, and the control plots (CK, undisturbed surrounding poplar forests that have continued to grow for more than 30
years) in Pingshuo, Loess Plateau. The results show that: (D) The effects of different vegetation restoration types on the
bacterial community a-diversity are significant (P < 0.05). Compared with CK, the Sobs and Shannon index of MF and CF
have increased by 35.29%, 3.50% and 25.18%, 1.05%, respectively, whereas there is no significant difference in the a-di-
versity of fungal community among different vegetation restoration types. 2 Actinobacteria, Chloroflexi, Proteobacteria
and Acidobacteria dominate in the bacterial community, and the first two dominant phylum are significantly higher than
CK, while the latter two are opposite (P < 0.05). Ascomycota and Basidiomycota are the dominant fungi in the fungal com-
munity. The former is significantly higher than CK, while the latter is opposite (P < 0.05). 3 The stochastic process dom-
inates the construction process of the soil bacterial community. In addition to the MF soil fungal community dominated by
deterministic process, other fungal communities are also dominated by a stochastic process. However, no matter which
type of vegetation is restored, the dominant role of the randomness process on the assembly of the bacterial community is
much higher than that of the fungal community. Moreover, Proteobacteria and Acidobacteria are key taxa of the bacterial
network, while Mortierellales, Thelebolales, Chaetothyriales, and Hypocreales are the key taxa of the fungal network. Ve-
getation restoration affects microbial community diversity, BL, CF, and MF increase the stability of the bacterial network,

and MF makes fungal network more complex. The soil bacterial assembly process is dominated by stochastic processes,

except for MF, and the fungal assembly process is also dominated by stochastic processes.

Key words: vegetation restoration; microbial community; ecological network; assembly process; key flora

B RRA X R A S RGN ™, S8
HERRE A i 240, s T XA IS IR, T
W TR ZREERE S R R RE . M
JFAE RS RGBS, (AR T 42 50% MIBEHLE™,
SR INR T MR A LR, BRI S FIAE
AR MR H ISR K R A AR I B E
N IX 2 At 2 5 AR S PR K R AL, AR A B S AN
IAHLO LA BE . BRI 2 0 L0 AR SR O P B
TR, A Y R G A e S —
AR M AES R 2 E I A SR
Rk /b o X R B IR GROK BRI BE ) 22, S BUR BY
WAL IR, NEW R+, — g+ PR
R AAIE . BN R — 2 XA TS
ARSI RE R T IR ) L, BB
(R0 AN T IEARSE FAF I AR KR I,
Wl A SRIKAE 1, 51 SR A B R O X
TP g e

PJUAF, SR B2 RE A Y H IR S
WE AR BUEYTE RS R G i fe) ™
HA G BRI 7, WS A A R G AR R AR 20 e
PR AR, R A S AR Y B R
Ao PR, P SR A Pt AL R ELAE R
Yy 22 ) EL AL % BRLAR  AE WAeV D RE Z BRI ]
FF T g U S AR

A TR R AE T, R SR R
VAL RS G S R R ) G2, L P R R
ABEEALRALRIT TS . — DT B 2RISR (Bam
I RCray) A5 BT 2 T T 2 Al 25 T v 2 i iod
R nl DL f Al B A T A e SR A
AW IE AR AR AL, VAL R AR MR T L R
et LI YRR A A e M A
BEPLIE R 2 4> 2 H AL, B v A el AR
AN ER (0 pH. IRESE) FAPIR R (RIS 4
EAFIRR) PE, T RAZE TR YIRS RIS )
fmbs FE SIRE ST o Gl EWIAET BEAE BRI J BRI 4 b
A7 A [ i e AE 220 R R i 1 98 D sk
R 2 S AR TR BT, DT R 1Y+ SRR B R
PIREIES AL RN S IR RS ORI A AR
VEFR., S P RE T LAE B A AREE (7
AEB, R R RIS A A T LR S )
HHEEARVE YO, ghing, 7L AR SRR AR D
- U A T R (B o = B A 0 NS e B P S T
BEE R MR, 2% L SRR, 2 D id e
PR LI AR G IR S, FE AR —
TR AR 2SR G0 A AR I R R SRR
A=) W 25 23 Hr R WESE W R E] S22 6 R i T
AR TR 3k 2L RU A 0 B A ) A
AN SCHERN S, A B WA IPAG A 4 DGRk



5 4 4]

Wk 3555 FaoRAl L1 A2 2300 T S W RV S A e R i 52 ) 1663

T SR G S S AR A W oT SR s ) KU
b R 2 B B R, I e S X R A
SRR W R v 2 2 A RS2 M E R R 3 B
MLV AR S R I R R P S2 408 1L AR S R
G D). EERAEERG AL A g5 I,
B VPR A O X R R R R R HE
RGNS G, R 4 FIRTHEEAIA 1 X B3k
40 AR, RIS R RSB S AT IR v
SERMIIRERYAZ AL, R A R B AR A=)
Oy AR AS AR G R R OGS AR BN LA B 22 52, 4
ANAEBCIR I XA X - SR AR A v 21 e R ) S T
LAUH, DA 52 4508 L AR 25 R T 1 SRR 4 0T UL A

1 #MB5FE

1.1 #REXHEER
ST X 2 KA R R B HE 5 T 1L v A 9

Sl I AR (BE)

JHTH (112.17°~113.50°E, 39.38°~30.62°N), B9 [X {3}
BN 1 PR, JE B R T OB TR XU,
AR RE K iR 426.7 mm, AEHR 5.6 C, (HFEK £
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Fig.1 Location of the study area and sampling sites
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10 cm £ 124 200 g, 1AL 1 000 g A HE, BEFPHLBE
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Table 1 Alpha diversity indices of bacterial and fungal community under different vegetation restoration types
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Sobs Shannon index PD Sobs Shannon index PD

CK 1130.38+104.05° 6.56+0.08° 122.5148.12° 265.25+38.78% 3.13+0.46° 79.01+9.83%
BL 1221.75+53.78" 6.53+0.06° 130.68+3.96% 240.75+18.23% 3.44+0.22° 71.56+6.54%°
CF 1415.00+38.00* 6.72+0.03% 143.96+3.36% 227.38+16.34% 3.57+0.15% 67.41+4.79%°
BF 1423.50+59.45% 6.64+0.04%° 150.98+5.10* 205.25421.62% 3.17+0.22% 55.70+5.64°
MF 1529.25+50.33% 6.79+0.03% 153.49+2.39% 256.13+£16.88% 3.33+0.27% 65.44+3.23%
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(Mortierellales) i 7%~ 17%, = H (Agaricales) F
XM H (Cantharellales) 1€ /N[ b ¥ (8] &2 28 ) B 3%
225 (K 4(b), P<0.05),
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Fig.3 Relative abundance of soil bacterial and fungal communities at the phylum level
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Fig.4 Relative abundances of top 15 bacterial and fungal order
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