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摘　要：传统地震资料的断层解释主要依靠解释者的知识和经验，存在工作量大、效率低的问题。

基于机器学习的断层识别方法，可以融合已有的地质资料、解释人员的知识和经验，构建高质量

的数据集，增加解释的准确率。为了提高机器学习方法断层解释的准确率，构建基于局部线性嵌

入 (LLE) 和支持向量机 (SVM) 算法的断层识别方法。首先，介绍了 LLE 和 SVM 算法的基本原理，

说明各算法的计算过程和主要参数；然后建立断层正演模型，分析不同属性的断层响应特征，针

对训练数据集中多种地震属性之间的信息冗余，分别通过 LLE 和主成分分析 (PCA)2 种算法对地

震属性数据进行降维，引入的量化指标计算结果表明 LLE 算法对于非线性数据体有较好的降维效

果；利用西上庄井田 6 条巷道、5 口钻井揭露的 11 854 个已知构造信息的数据点，分别训练

SVM,PCA-SVM 和 LLE-SVM 断层识别模型；以准确率 A、查全率 R、查准率 P、F 作为模型的衡

量标准，对比各模型在工区数据上的预测分类性能；其中，LLE-SVM 模型综合表现最佳，查准率

可达 94.4%，远高于其他模型；最后，利用构建的各模型对整个工区进行预测，并结合实际揭露

情况和人机交互解释结果进行分析。综合结果表明，基于 LLE 和 SVM 的断层识别方法在去除冗

余信息的同时能够有效突出断层响应特征，减少主观人为因素的影响，提高断层解释的效率。
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Abstract: The fault interpretation of traditional seismic data mainly relies on the knowledge and experience of the inter-
preter, which has the problems of heavy workload and low efficiency. In order to construct high-quality data sets and in-
crease the accuracy of interpretation, machine learning can integrate the existing geological data, the knowledge and ex-
perience of the interpreter. A fault recognition method based on Local Linear Embedding (LLE) and Support Vector Ma-
chine (SVM) algorithms is constructed to improve the accuracy of fault interpretation by machine learning methods. First,
the basic principles of LLE and SVM algorithms are introduced to illustrate the calculation process and main parameters of
algorithms. Then a fault forward modeling model is established to analyze the fault response characteristics of different at-
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tributes. Aiming at the information redundancy among various seismic attributes in the training data set, the seismic attrib-
ute data are dimensionally reduced by LLE and principal component analysis (PCA). The intersection diagram shows that
the LLE algorithm has a better dimensionality reduction effect for nonlinear data volumes. The SVM, PCA-SVM and LLE-
SVM recognition models of fault  were trained by using 11854 known structural  information data points revealed by six
roadways  and  five  drilled  wells  in  the  Xishangzhuang  Coalfield.  Accuracy  rate A,  recall  rate R,  precision  rate P  and F
value were used as the measurement standards to compare the prediction and classification performance of each model in
the research area.  Among them, the LLE-SVM model  has the best  overall  performance,  with a  precision rate  of  94.4%,
much higher than those of other models. Finally, the whole research area is predicted by using the models, and analyzed by
combining the actual disclosure and artificial interpretation results. The comprehensive results show that the fault identific-
ation method based on LLE and SVM can effectively highlight the fault response characteristics while removing redund-
ant information, reduce the influence of subjective factors, and improve the efficiency of fault interpretation.
Key words: fault  identification；seismic attributes optimization；3D coalfield seismic； locally linear embedding；sup-
port vector machine
  

断层是煤矿开采中常见的一种地质构造，主要是

由于地壳运动引发岩层断裂造成的[1]。在进行煤层开

采时不可避免地遇到各种地质构造，若在生产时忽视

了地质构造或者采取的安全措施不当，则很容易引发

煤矿地质灾害，给煤矿带来重大的经济损失和人员伤

亡[2]。因此，查明断层分布是构造解释的重要组成部分。

传统断层解释是研究人员根据地震剖面上同相

轴的不连续性来判别，这种方法不仅工作量很大，而

且很难发挥地震多属性解释的优势。为了打破传统

断层解释方法的局限性，一系列的断层增强属性从三

维地震数据体中被提取出来，如相干体属性通过道间

相似性的计算，描述地层的横向不均匀性[3]；曲率属性

通过沿层曲率值的计算，反映地层受构造应力挤压时

层面弯曲的程度[4]；混沌体属性通过局部构造张量特

征值相对大小和不同特征值的组合运算，衡量振幅值

的规律性和混乱性，从而突出特殊地质体的边界等[5]。

这些地震属性是地震数据通过数学计算得到的运动

学、动力学、几何学及统计学特征，一定程度上可以强

化和反映地层的不连续性[6]，但是本质上依然是单属

性解释方法。

近年来，伴随着人工智能领域的发展，出现了很

多基于机器学习算法的断层自动识别方法，这些方法

利用多种地震属性构建训练数据集，通过模型参数优

化实现断层识别，可以有效减少解释的多解性，是一

种真正的多地震属性断层解释方法。如 BP神经网络

算法[7]、支持向量机[8]、卷积神经网络[9] 等。支持向

量机 (SVM)作为一种新型的模式分类方法，其本质是

寻找分类平面，在面对小样本数据时，SVM算法构建

的模型相较其他算法具有更强的鲁棒性[10]。目前支

持向量机被广泛用于解决煤层气和瓦斯涌出量预

测[11-12]、煤层顶底板导水断裂带高度预测[13]、底板突

水量预测及突水危险性评价[14] 等问题。

已有的研究表明：在训练数据集中，随着地震属

性数量的增加，一是可能带来数据冗余，造成信息的

重复和浪费[15]，比如方差体属性和相干体属性的相关

性很高，这两种地震属性都可以表征断层构造；二是

大量属性中包含着许多彼此相关的因素，带来计算效

率的降低[16]。已有的机器学习训练数据集构建方法

表明：优化技术是解决此类问题的有效途径，可以降

低多解性提高预测精度[17-18]。常见的优化方法主要

有主成分分析 (PCA)、局部线性嵌入 (LLE)等。PCA
为地震属性融合过程中一种常用的属性优化方法，其

核心思想是通过坐标旋转消除原数据空间的多重共

线性，从而达到线性降维的目的[19]。JAHAN等[20] 使

用 PCA来对地震资料多种属性进行融合的方式来进

行断层识别和提取。但是，地震属性之间不仅存在线

性关系，还存在非线性关系。相较于 PCA，局部线性

嵌入 (LLE)可以对高维空间上的数据点进行降维，使

其低维空间的局部邻域关系与原嵌套空间相同，更适

合于解决地震数据的非线性特征降维问题[21]。

山西省西上庄煤矿小断层发育，笔者以该矿一二

分区西翼为研究靶区，在三维地震资料的基础上，提

取多种地震属性构建特征集，分别通过 LLE和主成分

分析 (PCA)2种算法对地震属性数据进行降维，对比

分析 SVM算法的断层识别效果，从而为煤田三维地

震资料解释断层分布提供了一种新的思路。 

1　基本原理
 

1.1　LLE 算法原理

LLE算法是 ROWEIS和 SAUL在 2000年提出

的非线性降维方法[22]。假设每个数据点与它近邻点

位于流形的一个线性或近似线性的局部领域，此时每
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个样本点就可以通过近邻点来线性表示，在重建低维

流形时，使得重构误差最小，令其每个数据点的局部

近邻关系与原空间保持一致[23–25]。算法实现共需要

3个步骤：

X = [x1, x2, · · · , xN] ∈ RD×N

xi

(1) 对样本数据集 ，寻找

每个样本点 的 k 个近邻点，其中，R 为实数域；D 为

数据维度；N 为样本数。

ε(W)

(2) 计算样本点的局部重建权值矩阵。通过定义

一个代价误差函数 ：

min ε(W) =
N∑

i=1

∣∣∣∣∣∣∣xi−
k∑

j=1

w i
jxi j

∣∣∣∣∣∣∣
2

(1)

xi j( j = 1,2, · · · ,k) xi k w i
j xi xi j

k∑
j=1

w i
j = 1

式中， 为 的 个近邻点； 为 与 之

间的权重，且要满足条件 。

(3) 将所有的样本映射到低维空间中。映射条件

满足：

min ε(Y) =
N∑

i=1

∣∣∣∣∣∣∣ yi−
k∑

j=1

w i
jyi j

∣∣∣∣∣∣∣
2

(2)

ε (Y) yi xi yi j( j =

1,2, · · · ,k) yi

式中， 为损失函数； 为 的输出向量；

为 的 k 个近邻点，且满足：
k∑

i=1

yi = 0，
1
N

N∑
i=1

yiyTi = I (3)

m×m w i
j (i = 1,2, · · · ,N)

N ×N x j xi

Wi, j = w i
j Wi, j = 0

其中，I为 的单位矩阵。这里 存

储在 的稀疏矩阵 W中，当 为 的近邻点时，

，否则 。损失函数可重写为

min ε (Y) =
N∑

i=1

N∑
j=1

Mi, jyTi yi (4)

N ×N其中，M为 的对称矩阵，其表达式为

M = (I−W)T (I−W) (5)

Y M m

M
m+1 m

要使损失函数值达到最小，则取 为 的最小

个非零特征值所对应的特征向量。在处理的过程中，

将 的特征值从小到大排序，第 1个特征值几乎接近

于 0，则舍去第 1个特征值。通常取 2～ 间的 个

特征值对应的特征向量作为输出结果。
 

1.2　SVM 算法

SVM算法是 CORTES和 VAPINK于 20世纪 90
年代提出的[26]，是使用最为广泛的核学习算法。它的

基本思想为将原低维输入空间中的非线性问题映射

到高维特征空间中进行求解。SVM的研究重点是寻

求最优的超平面，最大限度地减小训练数据的分类错

误[10,27-28]。SVM具体算法为

min Rε (w, ξ) =
1
2

wTw+C
N∑

i=1

ξi (6)

yi

(
wTxi−b

)
⩾ 1− ξi, i = 1,2, · · · ,N (7)

C

ξ

式中， 为惩罚系数，它会对分类器错分样本数产生影

响； 为松弛变量。

加入核函数后得到最终的 SVM分类函数为

f (x) = sgn
(∑

SV
ai
∗yiK (xi, x)+b∗i

)
(8)

a∗i b∗i K (xi, x)

φ (xi) φ
(
xj
)

xi xj

其中，SV为支持向量； 、 为拉格朗日乘子；

为核函数，核的值分别等于特征空间 和 中 2
个向量 和 的内积，即

K
(
xi, xj
)
= φ (xi)φ

(
xj
)

(9)

核函数的种类有很多，其中最常用的是高斯核函

数，因为其易于实现且具有非线性的映射能力，对处

理非线性数据体有较好效果。高斯核函数的表达式为

K
(
xi, xj
)
= exp

(
−g ∥ xi− xj∥2

)
(10)

其中，g 为核函数参数。如果 g 过大，高斯分布形态又

高又瘦，会造成只会作用于支持向量样本附近，模型

出现过拟合；反之，g 过小，模型容易出现欠拟合。 

2　断层正演模拟分析

为探讨不同地震属性对断层的响应特点，以及测

试 LLE算法对地震属性降维的效果，笔者基于交错网

格有限差分法构建断层正演模型，计算并提取地震属

性，观察断层对不同地震属性的响应情况，并以 PCA
线性降维方法作为参照，对比 2种降维方法在模型数

据上的降维效果。为了尽可能使模型符合实际情况，

正演模型构建时参考了研究区西上庄矿的实际地质

构造情况。断层正演模型 (图 1)参数如下：模型分为

3层，上层为砂岩层，速度均为 3 000 m/s，密度为 2.7
g/cm3；中间为煤层，埋深 300～350 m，速度为 2 000
m/s，密度 1.5 g/cm3，层厚为 4 m；下层为泥岩层，速度

为 2 800 m/s，密度为 2.2 g/cm3。煤层内包含 6个断层，

其中 3个为正断层，3个为逆断层，自左至右断层落差

分别为 5、14、4、17、3、20 m。模型地震道间距为 1
m，震源为雷克子波，频率 50 Hz。采用垂直激发，自

激自收，并加入了标准差 10% 的白噪声。

模型正演得到地震剖面，利用地震解释软件追踪

目标层位 (图 2)。根据研究经验，提取对断层响应特

征明显的属性，包括方差、混沌体、能量、倾角、瞬时

频率、瞬时相位、瞬时振幅、均方根振幅、最大振幅、

最小振幅和弧长，一共提取 11种属性。将各属性值

分别进行归一化处理后投影到坐标系中，如图 3(a)所
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示。可以看出：断层信息与各属性值分布均具有一定

规律性，这表明通过这些属性可以区别断层与非断层；

同时还可以观察到部分属性与断层之间存在相似的

关系，这反映了信息的冗余问题。如果将这些属性信

息全部用于断层识别，很容易造成模型训练过程中的

过拟合，因此需要对属性数据进行降维处理。
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图 1    正演模型

Fig.1    Forward model
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图 2    模型正演剖面

Fig.2    Cross-section of forward modeling
 

对提取得到的 11种地震属性值分别进行 LLE降

维和 PCA降维。以累计方差贡献率大于 95% 的标准，

PCA降维算法选取的主成分个数为 7；以重构误差最

小为标准，LLE算法近邻点取值为 3，嵌入维度取值

为 2，降维后的特征响应情况如图 3(b)、(c)所示。为

了分析 2种算法的降维效果，笔者引入量化指标来进

行评价，其主要思想为：对于一个较好的降维方法而

言，任意 2个点在高维空间中如果是近邻点，那么降

维后它们在低维空间中也应当是近邻点[29]。该指标

的计算如式 (11)所示，它的值介于 0和 1之间，指标

值越小意味着降维结果中近邻信息保持得更好，也就

是降维结果更理想。

Index =
1
pq

p∑
a=1

q∑
b=1

[
DH(a,b)− DL(a,b)

]
(11)

DH (a,b)

DL(a,b) a =

式中， 为归一化后的高维空间中的距离矩阵；

为归一化后的低维空间中的距离矩阵；

1,2, · · · , p b = 1,2, · · · ,q;  。

经过计算，PCA降维的数据集 Index值为 4.62×
10–4，LLE降维的数据集 Index值为 2.75×10–4。该指标

的计算结果证明，LLE算法的降维效果更加理想。地

震属性数据在经过 LLE降维后，既减少了数据中的冗

余信息，又很好的保留了原始数据的拓扑关系，保证

了断层和非断层点仍然可以通过新产生特征进行区分。 

3　案　　例

在正演模拟结果的基础上，为了进一步分析

LLE–SVM断层识别方案的可行性和适用性，尝试对

实际三维地震数据进行应用。 

3.1　研究区概况

本次的研究靶区是西上庄井田，其位于山西省阳

泉市及晋中市寿阳县境内。井田地处山西省黄土高

原的中高山区，井田内地势陡峻，地形高差悬殊。一

第 4 期 　邹冠贵等：基于 LLE和 SVM的地震断层自动识别方法 1637



 
方差

混沌体

倾角

瞬时频率

瞬时相位

均方根振幅

最大振幅

最小振幅

弧长

能量

瞬时振幅

( a ) 原始属性

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

道号

1.0

0.5

0
0 50 100 150 200 250 300 350

归
一

化
后

的
原

始
属
性
值

主成分 1

主成分 2

主成分 3

主成分 4

主成分 5

主成分 6

主成分 7

( b ) PCA 降维后特征

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

道号

1.0

0.5

0
0 50 100 150 200 250 300 350

P
C

A
 降

维
后

主
成

分
值

维度 1

维度 2

( c ) LLE 降维后特征

1.0

0.5

0

道号

1.0

0.5

0
0 50 100 150 200 250 300 350L

L
E

 降
维
后

各
维
度

值

图 3    断层处的特征响应情况

Fig.3    Characteristic responses at faults
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般相对高差 150～300 m，地势西高东低，南高北低。

井田内大部为基岩裸露区，局部为新生界地层所覆盖。

井田内可采煤层有：山西组 3、6、15号煤层，太原组 8、
9、12、15、15下号煤层。其中，15号煤层是本次解释

目标层，位于山西组中部，煤层厚度 2.95～5.12 m，平

均 3.75 m，煤层结构简单，偶含 1～2层夹矸。研究靶

区的勘探面积为 4 km2，工作面内已有 6条巷道、5口

钻井，其在矿区内的分布及断层揭露情况如图 4所示，

已揭露的 4条断层 F1、F2、F3和 F4的断层信息见

表 1。
  

F2 F4

F3

F1

断层井 无断层井 巷道和断层揭露的已知断层巷道

普-1

3-3 4-3

5-3 普-2

0 300 m N

图 4    研究靶区已有巷道、钻井分布

Fig.4    Distribution of existing roadway and drilling in the research target area
 
 

表 1    已揭露断层的基本信息

Table 1    Basic information on exposed faults

断层 正逆 倾角/( ° ) 落差/m 延展长度/m

F1 正 70～80 0～6 398

F2 正 60～70 0～20 475

F3 正 70～80 0～5 210

F4 逆 60～70 0～17 712
  

3.2　地震属性提取与降维

利用工区内测井数据以及地震波的波阻抗关系

在地震数据解释软件中标定并追踪目标煤层。提取

和上述正演模型相同的 11种地震属性，全区共提取

数据点 149 996个，图 5为部分地震属性的可视化展

示。根据巷道、测井揭露的断层和非断层点信息标记

标签，其中断层点的信息来自图 4中的断层 F1、F2
和 F4，断层 F3留作验证。断层点标记为“1”，非断层

点标记为“0”，共标记数据点 11 854个，包含断层数

据点 4 578个，非断层数据点 7 276个。

由于地震属性数据的量纲不同，数据量差别很大，

所以在进行降维处理前，通过式 (12)将工区内的所有

数据进行标准化，标准化后的数据在 [0,1]内且无量纲。

将标准化后的数据复制为 3组，对 3组数据分别进行

不同的操作，分别是保持原始数据不变、将数据进行

PCA降维和进行 LLE降维变换。

yi =
xi− xmin

xmax − xmin
(12)

式中，yi 为归一化后样本值；xi 为归一化前样本值；

xmax 为样本最大值；xmin 为样本最小值。

d

K

K

K

K

K K

d

在将数据集进行 PCA降维时，确定的主成分个

数为 4，该主成分取值下累计方差贡献率达 95%。

LLE算法主要有 2个输入参数：嵌入后的维数 和样

本邻近点数 。降维的质量和这 2个参数有很大关系。

其中，近邻点个数 的选取在 LLE算法中起到关键作

用，如果 选取太大，那么每个邻域会更趋近于整体，

LLE会丢失非线性特征，不能体现局部特性；如果 选

取太小，LLE则不能保持样本点在低维空间中的拓扑

结构，通常情况下 取值在 10左右，笔者对 在 [6,12]
上进行测试。本征维数 是指降维映射后的输出维数，

如果本征维数选取得太大，输出数据则会受到噪声的

影响；如果本征维数选取得过小，则不能正确地提取

地震属性样本数据的固有特征。本文地震属性数据

集降维的目标维度在 [4,10]进行测试。

K d

d

K

d

d = 5 K = 6

确定参数的范围后，通过网格搜索法来确定最佳

的 和 ，使得重构后的数据和原始数据误差最小。将

邻近点数 K 和目标维度 的取值组成网格，每一个网

格就是 (K, d)的一种取法，计算每一对参数的重构误

差，选择重构误差最小的参数组合。数据集通过 LLE
降维后的重构误差整体上是随着邻近点数 和嵌入维

度 增加而增加，如图 6所示。其中，在“五角星”标记

处，存在误差最小值 3.212 062 73×10−16，此时对应的

最佳参数取值为 ， 。 

3.3　SVM 模型参数寻优

C

为了构建 SVM模型，分别将 3组数据集中的巷

道、断层已揭露的标记有标签的样本点选出，用于训

练和构建基于支持向量机算法的断层识别模型。支

持向量机模型在构建过程中，其分类性能除了和输入

数据集有关外，还取决于惩罚系数 和核函数参数 g。
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针对支持向量机的参数选择问题，本研究采用基

于粒子群优化算法的参数选择方法。粒子群优化算

法 (Particle  Swarm  Optimization，PSO)由 KENNEDY
和 EBERHART在 1995年提出，它通过个体间的协作

来寻找最优解，拥有效率更高，更容易实现的优点。

PSO求解优化问题时，问题的解对应于寻找搜索空间

中一只鸟的位置，这些鸟被称为“粒子”，每一个“粒

子”都有自己的位置和速度 2个属性，分别决定飞行

的方向和距离，还有一个优化函数决定的适应值。每

一个粒子记录并追随当前最优粒子在搜索空间中寻

找最优解。PSO初始化为一群随机粒子，通过迭代找

到最优解。在每一次迭代中，粒子通过跟踪 2个极值

来更新自己，一个是粒子本身找到的最优解叫个体极

值，另一个是整个种群找到的最优解叫做全局极值。

在找到 2个最优解时，粒子根据 2个公式来更新自己

的速度和位置。算法具体步骤如下：

C设定 SVM中的惩罚系数 和参数 g 作为粒子群

中的粒子，将 SVM分类正确率作为适应度函数，表达
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图 5    地震属性平面

Fig.5    Planar graph of seismic attributes
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式为

S =
ct

ct+ cf
×100% (13)

ct cf式中， 为支持向量机分类正确数； 为分类错误数。

利用建模的数据集分别计算 2个粒子的适应度

值，并利用式 (14)及式 (15)对 2个粒子的速度和位置

进行更新：
vin(t) =vin(t−1)+ c1r1 j

[
pin− xin(t−1)

]
+

c2r2 j
[
pgn− xin(t−1)

]
(14)

xin(t) = xin(t−1)+ vin(t) (15)

n 1 < n < N c1 c2 r1 j r2 j

vin(t) t i

n xin(t) t i n

pin(t) t i n

pgn(t) t n

式中， 为维数， ； 和 为正常数； 和 为

[0,1]范围内的 2个随机数； 为 时刻、第 个粒子在

第 维度上的速度； 为 时刻、第 个粒子在第 维度

上的位置； 为 时刻、第 个粒子在第 维上的个体

最优值； 为 时刻、所有粒子在第 维上的最优值。

将已知标签的各数据集按照 7∶3的比例分为训

练集和测试集。在利用训练集训练过程中，通过 PSO
搜索 SVM模型的最佳参数 C 和 g。以经过 LLE降维

的数据集为例，参数训练过程中，其适应度值随进化

代数变化情况如图 7所示。由图 7可以看出，SVM模

型在进化到 30代后，最佳适应度值就不再变化，此时

参数 C 取值为 22.873 6，参数 g 取值为 76.282 1。其

他 2组数据集开展同样的参数寻优过程，最终各模型

的最佳参数取值见表 2。
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图 7    适应度值随进化代数变化 (LLE降维数据)

Fig.7    Fitness value changes with evolutionary Algebra (LLE

dimensionality reduction data)
 

 
表 2    PSO 参数寻优结果

Table 2    PSO parameter optimization results

模型 C g

SVM 7.431 4 193.762 2

PCA-SVM 5.840 1 159.229 7

LLE-SVM 22.873 6 76.282 1
 

3.4　模型评价

在利用测试集进行模型评价时，为了更好地评价

各 SVM模型的断层识别能力，本研究选用了 4个参

数评价模型性能，分别是准确率 A、查准率 P、查全率

R 和 F。各参数的计算方法见表 3和式 (16)～(19)。
其中，准确率 A 是指预测正确的样本点在总样本点中

占的比例，是评价预测效果的常用指标。查准率 P 是

指预测正确的断层样本在所有预测为断层样本中占

的比例。查全率 R 是指预测正确的断层样本在确实

为断层的样本中占的比例，代表了模型在断层样本的

预测能力。F 值通过查准率 P 和查全率 R 两项指标

计算调和平均数得到。4种指标代表了不同的意义，

在使用 4种指标进行比较时，好的模型并不一定在全

部指标上优于其他模型，优秀的模型是综合考虑实际

应用场景和需求，得到合适的结果。
 

表 3    评价指标交叉矩阵

Table 3    Cross matrix of evaluation index

样本标签(1/0) 推测断层(1) 推测非断层(0)

揭露的断层(1) 正确正例(TP) 错误的负例(FN)

揭露非断层(0) 错误的正例(FP) 正确的负例(TN)
 

各模型评价参数的计算结果如图 8所示。其

中准确率最高的是 LLE-SVM模型为 0.836 895，最低

的是 PCA-SVM模型为 0.790 051；查准率最高的是

LLE-SVM模型为 0.944 009，最低的是 SVM模型为

0.810 863；查全率最高的是 SVM模型为 0.626 217，最
低是LLE-SVM模型为0.613 984；F 最高的是LLE-SVM
模型为 0.744 042，最低的是 SVM模型为 0.706 678。
综合来看 LLE-SVM模型有最好的预测性能。
  

SVM
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PCA-SVM

0.790 051 0.822 581 0.625 767 0.710 801
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评
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图 8    各模型评价结果

Fig.8    Evaluation results of different models
 

A =
TP + TN

TP + TN + FP + FN
(16)
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P =
TP

TP + FN
(17)

R =
TP

TP + FP
(18)

F =
2

1/P+1/R
(19)

 

3.5　研究区预测及分析

将训练得到的模型对整个研究区内的断层分布

进行预测，对预测结果进行成图，如图 9所示。其中

图 9(a)～(c)分别为原始数据预测结果、PCA降维后

预测结果、LLE降维后预测结果。为了更好地对各模

型预测结果进行分析，将巷道、钻井揭露的断层分布

以及该研究区内人工解释的断层分布情况均标记到

图 9中。通过这些信息，对预测情况进行分析：① 整
体看来，没有进行降维处理的原始数据预测结果，预

测的异常区域偏大，断层连片分布严重；PCA-SVM模

型预测的异常区域比原始数据少，与人工解释的断层

走向基本一致，但在断层 F3处并没有异常响应；原始

数据通过 LLE降维后，在断层 F3处存在异常响应。

② 从图 9中的断层展布来看，各模型预测的断层走向

和断层延展长度大致相同，最大不同之处在于每个断

层垂直于走向方向的分布形态，即断层的“胖瘦”情况。

当断层“过胖”时，代表更多的非断层点被预测为断层

点，此时查准率将会降低；反之，当模型预测的断层形

态清晰且准确时，模型的查准率就会升高。LLE模型

较好的分布形态与该模型较高查准率的模型评价结
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图 9    各模型预测断层展布

Fig.9    Fault distribution predicted by each model
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果相吻合。③ 图 9(a)中的区域 A和图 9(c)中区域

H处，人工解释未解释出断层，但从巷道实际揭露情

况来看，A区域实际存在落差 5 m的小断层 F3。这说

明相较于人工断层解释，机器学习模型在小断层识别

上具有一定优越性。④ 在区域 G处，尽管人工解释

此区域存在断层，但 PCA-SVM和 LLE-SVM两种模

型在该区域响应都较弱。从巷道揭露的情况看，G区

域经过巷道的部分并没有断层，因此判断该区域存在

断层的可能性较小。 

4　结　　论

(1)利用 PCA和 LLE算法分别对正演模拟数据

进行降维，量化指标的评价结果表明：LLE算法可以

充分发挥非线性优势，保留地震数据间的拓扑关系，

降维效果更加理想。

(2)相较于 LLE-SVM模型，SVM模型和 PCA-
SVM具有较高的查全率 R，并且在全区预测图上表现

为大面积的异常区域。这一结果说明：原始属性集本

身存在信息冗余导致的模型过拟合问题；PCA降维后

的属性集虽然可以避免信息的重复，但在线性降维过

程中，破坏了原有的数据结构，导致模型分类精度相

对较低。

(3) LLE-SVM模型以牺牲小部分查全率 R 为代

价得到了更高的查准率 P，预测结果也与实际揭露更

加匹配。这表明利用 LLE算法对地震属性进行降维，

大大提高了数据的有效信息密度；在保留原始数据集

有效信息的同时，可以有效地压制噪声。

(4) LLE-SVM断层识别方法具有很强的可行性

和适用性，具有广泛的应用前景；目前西上庄井田揭

露的断层数量有限，后续的回采验证可以有助于对模

型进一步完善和分析。
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