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Experiment, modelling, mechanism and significance of multiscale and dynamic dif-
fusion-permeability of gas through micro-nano series pores in coal
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ter of Coalbed Methane and Shale Gas for Central Plains Economic Region (Henan Province), Henan Polytechnic University, Jiaozuo 454000, China;
4.Henan Provincial Key Lab of Gas Geology and Control-Cultivation Base of Provincial and Ministry Joint State Key, Henan Polytechnic University,
Jiaozuo 454000, China)

Abstract: As one of the hot issues at the frontiers of science in the world, the multi-scale scientific question has occurred
in the fields of natural science and engineering. The seepage in coal-rock, a branch of the multi-scale science, shows its
multi-scale scientific question. Coal is a porous medium that contains multi-scale pores with the aperture from millimeter
to nanometer. The pore size differential can reach one million orders of magnitude, which causes the multi-scale character-
istics in space and time for coal permeability. Therefore, the research on the multi-scale permeability of coal is a critical
scientific issue of the coal gas flow as well as an engineering extension of methane drainage. The unsteady diffusion-seep-
age experiment is conducted for CH,/He with and without stress using a cylindrical coal sample, accompanied by steady
state seepage experiment. The experimental results show that the apparent diffusion coefficient of a cylindrical coal sample
attenuates with time. This apparent diffusion coefficient shows two different multi-scale characteristics in time, the smooth
and dynamic attenuation and the dynamic attenuation in a two-stage step. A dynamic model for the apparent diffusion
coefficient is proposed, and it can accurately describe the complete unsteady flow process of gas in a cylindrical coal
sample. The physical and mathematical models of the multi-scale pores in series are put forward. Then, the multi-scale
structure of pore in series is validated by the mercury injection experiment. After that, the multi-scale permeability model
is mathematically proved. Based on the Knudsen number (Kn), the continuous flow, slip flow, transition flow and free mo-
lecular flow are identified and introduced with the multi-scale pore size to build a multi-scale permeability model that re-
flects the effect of the effective stress and gas flow regime. The mechanism of the multi-scale seepage is revealed in this
study. The size and the number of pores in series connection are the critical factors to influence the multi-scale permeabil-
ity. The multi-scale effect can reach tens of thousands orders of magnitude within measurable range. The gas outflow
firstly starts from the outside fractures, and then the inside small pores and finally the nano pores. With time goes on, the
gradual increase in the number of pores in series connection leads to the gradual decrease in the equivalent pore size,
which causes the equivalent pore aperture to get close to the minimum pore aperture. Therefore, the equivalent permeabil-
ity quickly decreases with time, which is a reflection of the multi-scale space in coal. During the later stage of gas flow, the
effect of slip and transition flow regime is larger than that of effective stress with Kn increasing and dominates the per-
meability. The new experimental observation and modelling of the multi-scale permeability provides an experimental solu-
tion for the research of the multi-scale seepage and overcomes the shortcoming of single tube theory. The diffusion and
seepage are apparently unified, and the micro-level distinguishment and macro-level union of the multi-scale permeability
are realized.

Key words: multiscale; dynamic; permeability; diffusion; micro-nano pore
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Fig.1 Triaxial diffusion-seepage testing system for coal rock
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