许江,贾立,甘青青,等. 热压型煤成型条件优化试验研究方法[J]. 煤炭学报,2024,49(2):739−752. doi: 10.13225/j.cnki.jccs.ST23.1347
引用本文: 许江,贾立,甘青青,等. 热压型煤成型条件优化试验研究方法[J]. 煤炭学报,2024,49(2):739−752. doi: 10.13225/j.cnki.jccs.ST23.1347
XU Jiang,JIA Li,GAN Qingqing,et al. Experimental method for optimizing the molding conditions of hot-pressed briquette[J]. Journal of China Coal Society,2024,49(2):739−752. doi: 10.13225/j.cnki.jccs.ST23.1347
Citation: XU Jiang,JIA Li,GAN Qingqing,et al. Experimental method for optimizing the molding conditions of hot-pressed briquette[J]. Journal of China Coal Society,2024,49(2):739−752. doi: 10.13225/j.cnki.jccs.ST23.1347

热压型煤成型条件优化试验研究方法

Experimental method for optimizing the molding conditions of hot-pressed briquette

  • 摘要: 针对当前煤矿瓦斯动力学物理模拟试验中型煤材料存在低强度和高渗透率问题,建立了一套热压型煤成型条件优化试验研究方法。首先,自主研发了热压型煤试验系统,并对试验系统优势和今后改进方向进行了汇总,同时基于Horsfield致密堆积理论创建了型煤材料最优配制方案,最后形成了以马氏距离度量法和黄金分割法相结合的成型条件优化方法。为了验证试验方法的效果,通过控制成型温度为311.8 ℃、升温速率为5 ℃/min和保温时间为5.3 h,开展了不同成型压力条件下热压型煤试验研究,研究了不同成型压力条件下的热压型煤微观结构、物理力学特性和渗透特性等响应特征。结果表明:增加成型压力,总孔隙度逐渐减小,单轴抗压强度呈先增大后减少的变化趋势,破坏形式以块状剥落和纵向破裂为主,初始渗透率呈先减小后增大、最小渗透率则呈先减后增再减的变化趋势。以各成型条件的具体数值为试验点、热压型煤和原煤的关键参数为评价参量构建样本矩阵,计算各成型条件下热压型煤和原煤之间的马氏距离,再结合黄金分割法对试验区间进行优化求解,优化后的最佳成型压力为80 MPa,在此成型条件下制作的热压型煤密度、单轴抗压强度和初始渗透率分别为1.137 g/cm3、12.21 MPa、1.32 × 10−15 m2,与原煤的1.132 g/cm3、12.83 MPa、1.08 × 10−15 m2相似性极高,达到了提高型煤强度、降低型煤渗透率的目的。

     

    Abstract: In response to the problems of low strength and high permeability of coal materials in the current physical simulation test of coal mine gas dynamics, a set of experimental research methods for optimizing the molding conditions of hot-pressed briquette. Firstly, a hot-pressed briquette test system was independently established and the advantages and future improvement directions of the test system were summarized. At the same time, based on the Horsfield dense stacking theory, the optimal preparation plan for coal briquette materials was formulated. Finally, a molding condition optimization method was developed that combines the Markov distance measurement method and the golden section method. To verify the effectiveness of the experimental method, the secondary carbonization experiments of briquette were conducted under different molding pressure conditions by controlling the molding temperature to 311.8 ℃, heating rate to 5 ℃/min, and holding time to 5.3 h. The response characteristics of the microstructure, physical and mechanical properties, and permeability characteristics of the hot-pressed briquette under different molding pressure conditions were studied. The results show that with the increase of molding pressure, the total porosity gradually decreases, and the uniaxial compressive strength shows a trend of first increasing and then decreasing. The main forms of failure are block spalling and longitudinal fracture. The initial permeability shows a trend of first decreasing and then increasing, while the minimum permeability shows a trend of first decreasing, then increasing and then decreasing. Using the specific values of each molding condition as the test points, and the key parameters of hot-pressed coal and raw coal as the evaluation parameters, a sample matrix was constructed to calculate the Mahalanobis distance between hot-pressed briquette and raw coal under each molding condition, and then optimize the experimental interval using the golden section method. The optimized final molding pressure is 80 MPa. Under these molding conditions, the density, uniaxial compressive strength, and initial permeability of the hot-pressed briquette produced are 1.137 g/cm3, 12.21 MPa, and 1.32 × 10−15 m2, respectively. They are highly similar to the 1.132 g/cm3, 12.83 MPa, and 1.08 × 10−15 m2 of the raw coal, achieving the goal of improving the strength of the briquette and reducing the permeability of the briquette.

     

/

返回文章
返回